
Nikolay Matyunin
matyunin@seceng.informatik.tu-darmstadt.de
TU Darmstadt, CYSEC, Germany

Yujue Wang
yujue.wang@stud.tu-darmstadt.de

TU Darmstadt, Germany

Tolga Arul
arul@seceng.informatik.tu-darmstadt.de
TU Darmstadt, CYSEC, Germany

Kristian Kullmann
kristiandietmar.kullmann@stud.tu-darmstadt.de

TU Darmstadt, Germany

Jakub Szefer
jakub.szefer@yale.edu
Yale University, USA

Stefan Katzenbeisser
stefan.katzenbeisser@uni-passau.de
Chair of Computer Engineering,
University of Passau, Germany

ABSTRACT
Recent studies have shown that aggregate CPU usage and power
consumption traces on smartphones can leak information about
applications running on the system or websites visited. In response,
access to such data has been blocked for mobile applications start-
ing from Android 8. In this work, we explore a new source of side-
channel leakage for this class of attacks. Our method is based on
the fact that electromagnetic activity caused by mobile processors
leads to noticeable disturbances in magnetic sensor measurements
on mobile devices, with the amplitude being proportional to the
CPU workload. Therefore, recorded sensor data can be analyzed
to reveal information about ongoing activities. The attack works
on a number of devices: we evaluated 80 models of modern smart-
phones and tablets and observed the reaction of the magnetometer
to the CPU activity on 56 of them. On selected devices we were
able to successfully identify which application has been opened
(with up to 90% accuracy) or which web page has been loaded (up
to 91% accuracy). The presented side channel poses a significant
risk to end users’ privacy, as the sensor data can be recorded from
native apps or even from web pages without user permissions. Fi-
nally, we discuss possible countermeasures to prevent the presented
information leakage.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures;Mobile platform security; Browser security; • Hard-
ware→ Sensor applications and deployments.

KEYWORDS
information leakage, smartphone sensors, hardware side channels,
application fingerprinting, website fingerprinting, mobile security,
magnetometer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WPES’19, November 11, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6830-8/19/11. . . $15.00
https://doi.org/10.1145/3338498.3358650

ACM Reference Format:
NikolayMatyunin, YujueWang, Tolga Arul, Kristian Kullmann, Jakub Szefer,
and Stefan Katzenbeisser. 2019. MagneticSpy: Exploiting Magnetometer
in Mobile Devices for Website and Application Fingerprinting. In 18th
Workshop on Privacy in the Electronic Society (WPES’19), November 11, 2019,
London, United Kingdom. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3338498.3358650

1 INTRODUCTION
Mobile devices have become ubiquitous in people’s daily activities.
According to recent studies, adults spend more than 2.5 hours per
day on their smartphones or tablets [36], the average user runs
over 30 mobile applications per month [48], while mobile Internet
traffic already exceeded desktop usage [28]. Such extensive mobile
usage results in an increasing amount of personal information that
is stored and processed on mobile devices, which increases risks of
its unauthorized or malicious misuse. Fortunately, mobile operating
system developers put a great deal of effort to limit such risks, by
isolating running applications into sandboxed environments and
by introducing permission-based access restrictions for sensitive
components [7, 18].

Nevertheless, several previous studies have shown that an at-
tacker can exploit side-channel leakage to infer information about
applications and websites opened on a victim’s mobile device. These
leakage sources include network traffic statistics [45, 54, 55], power
consumption traces [24, 51], CPU utilization [44, 53], memory us-
age statistics [23, 32, 54], and other information available through
the procfs pseudo filesystem [46] or system APIs [47, 54]. The infor-
mation obtained from application and website fingerprinting can
potentially reveal sensitive information about the user, e.g., hobbies,
political interests, religious beliefs, or health conditions. The more
actively a victim uses the device, the more precise is the resulting
user profile.

To prevent such attack vectors, operating system developers have
gradually restricted access to system resources which can reveal
sensitive information. In particular, starting from Android 7, ap-
plications cannot access pseudofiles revealing system information
about other processes (e.g., /proc/[PID]) or monitor traffic statistics
of other applications [4]. Similar access restrictions to per-process
statistics are applied to applications on iOS devices starting from
iOS 9 [54]. Furthermore, starting from Android 8 and on the most
recent Android 9, the access to global system statistics available
through procfs and sysfs is restricted [11], preventing application

MagneticSpy: Exploiting Magnetometer in Mobile Devices for
Website and Application Fingerprinting

 © 2019 Association for Computing Machinery.

This is the author ’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in 18th Workshop on
Privacy in the Electronic Society (WPES’19), November 11, 2019, London, United Kingdom, https://doi.org/10.1145/3338498.3358650

https://doi.org/10.1145/3338498.3358650
https://doi.org/10.1145/3338498.3358650
https://doi.org/10.1145/3338498.3358650
https://doi.org/10.1145/3338498.3358650

and website fingerprinting attacks based on CPU utilization and
power consumption traces.

In this paper, we propose an alternative source of side-channel
leakage for identifying activities running on mobile devices, based
on the reaction of magnetometer sensors to CPU activity. It has
recently been shown that peak CPU activity on a smartphone can
cause a noticeable disturbance in magnetic sensor measurements.
In [37], authors utilized this observation to establish a covert chan-
nel, by encoding a payload into binary patterns of peak and idle
CPU activity and analyzing the produced sensor disturbance. In
this work, we propose to use this effect as a passive side-channel
attack which aims to identify running activities. We show that mag-
netometer disturbance patterns closely represent CPU workload.
Therefore, they allow to fingerprint browsing and application activ-
ity with an accuracy comparable to the method based on observing
overall CPU statistics available through procfs before Android 8.
The proposed method does not require any user permissions at the
moment. As a result, any application installed on a device can infer
running applications or visited websites, unnoticeable to the end
user. Furthermore, the magnetometer can now be accessed within
web pages using the recently-introduced Generic Sensor API [49].
In this case, the attack does not even require an installed malicious
application. Instead, a web page under the attacker’s control can
establish fingerprinting of other web pages or applications.

We have examined 80 popular smartphones and tablets, and
have found that magnetometers on 56 of them are affected by CPU
activity. For these devices, we created a classifier which analyzes
disturbances in recorded sensor measurements to identify activities
on a device. In practical scenarios, we are able to identify an opened
website with an accuracy of up to 91% for a set of 50 popular
websites. We were also able to identify a running application with
up to 90% accuracy for a set of 65 candidate applications. In all
cases, the accuracy is significantly higher than the baseline accuracy
obtained from random guessing, and is comparable to the approach
based on analyzing procfs information. Therefore, the presented
side channel can pose significant privacy risks to end users.

1.1 Contributions
Our contributions can be summarized as follows:

• We investigate the reaction of magnetic sensors to varying
CPU activity on 80 different smartphones and tablets in cloud
and lab environments. To the best of our knowledge, our
work is the first to test this side channel on a large number
of devices running both Android and iOS platforms.

• We propose to exploit this side channel for application and
website fingerprinting on mobile devices. We show how to
extract information from magnetometer disturbances, evalu-
ate the classification performance under realistic conditions,
and discuss possible countermeasures.

• We show that our method provides classification accuracy
comparable to techniques based on procfs leakage, but works
in presence of security enhancements implemented in the
latest mobile operating systems, and can be run in both in-
app (malicious app) and in-browser (malicious web page)
scenarios.

2 BACKGROUND
In this section, we provide background information, describing the
use of magnetometers in mobile devices and show the reaction of
magnetometers to electromagnetic activity caused by the CPU.

2.1 Magnetometers
Most modern smartphones and tablets are equipped with magnetic
sensors, also called magnetometers. These sensors measure the
ambient geomagnetic field intensity for all three physical axes
in units of micro Tesla, usually by utilizing the Hall effect [21].
Normally, they are used to estimate the orientation of the device
relative to earth’s magnetic north and in this way act as digital
compasses, e.g., to show the user’s current direction in navigation
applications.

In Android and iOS native applications, 3-axis magnetometer val-
ues can be retrieved using the Sensor [14] and the Core Motion [5]
frameworks, respectively. Depending on a device, the sampling
rate is limited by the operating system to 50–100Hz. Access to the
sensor does not require any explicit permissions, and therefore, any
installed application can read sensor measurements without user
attention. In web applications, magnetometer data can be accessed
using the recently introduced Generic Sensor API [49], currently in
W3C Working Draft status. The API is available in Google Chrome
and Opera web browsers, but at the moment access to magnetome-
ter requires a configuration flag to be explicitly enabled [42]. In
comparison to native APIs, the Generic Sensor API has additional
limitations: First, the data can be accessed only from the foreground
tabs, and only for web pages opened using HTTPS. Second, the
sampling rate is limited to 10 Hz. Nevertheless, we present attack
scenarios which work even in the presence of these limitations (Sec-
tion 3), while our experiments (Section 5.2) show that a sampling
rate of 10 Hz does not prevent the side channel.

2.2 Sensitivity of magnetometers to CPU
activity

As it has been discovered in prior work [30, 38], the magnetometer
on mobile devices is susceptible to the electromagnetic radiation
emanated from electronic devices located nearby. In particular, high
CPU workload on a device typically requires more power, which re-
sults in a higher produced electromagnetic field. Matyunin et al. [37]
showed that this effect is observable on a smartphone: Very high
CPU activity on a Nexus 5X smartphone (close to 100% of the CPU
load) led to a noticeable peak in magnetometer measurements.

In this work, we further investigate the reaction of magnetome-
ters to CPU activity on mobile devices. We have observed that on
many smartphones the pattern of the sensor disturbance accurately
follows the pattern of the CPU utilization. The reasons for this are
the following: On one hand, the CPU is one of the most power-
consuming components of the device [22]. The screen and GSM
module can consume more power, but their consumption remains
comparably stable during normal usage. On the other hand, mobile
processors are optimized to consume minimum power under low
or idle activity.

At the same time, different applications or websites require dif-
ferent amounts of CPU resources when running. As a result, CPU
utilization traces, as well as the corresponding sensor disturbance,

0 2 4 6 8 10
Time (s)

-2

-1

0

1

2

3

Si
gn

al
am

pl
itu

de
(m

T
)

Facebook Messenger, magnetometer data

0 2 4 6 8 10
Time (s)

-2

-1

0

1

2

3

Si
gn

al
am

pl
itu

de
(m

T
)

TripAdvisor, magnetometer data

0 2 4 6 8 10
Time (s)

0

10

20

30

40

50

60

C
PU

lo
ad

(%
)

Facebook Messenger, CPU data

0 2 4 6 8 10
Time (s)

0

10

20

30

40

50

60

C
PU

lo
ad

(%
)

TripAdvisor, CPU data

Figure 1: Examples of CPU utilization and magnetometer measurements, recorded during opening two applications on a
Google Pixel 2 smartphone. Plots representmean and standard deviation for 175 samples. TheCPUand sensor data are visually
correlated with each other for each application and are significantly different between applications.

can contain distinct patterns which uniquely identify the activity.
Figure 1 shows CPU utilization traces recorded on a smartphone
for two applications, in combination with magnetometer readings
recorded at the same time. The patterns in the corresponding CPU
and sensor measurements are visually correlated for each applica-
tion, they are stable within multiple recordings, but distinct for two
different applications. In this work, we show that an adversary can
effectively extract information out of such recorded magnetome-
ter measurements, and use it to perform application and website
fingerprinting on a victim’s device.

3 ATTACK SCENARIO
In this section, we discuss two considered attack scenarios, in-
app and in-browser, discuss their limitations and elaborate on the
considered assumptions.

In the in-app scenario, the victim installs an attacker-controlled
application on his or her device. This application does not require
privileged access rights from the system and does not have addi-
tional user permissions, apart from access to the Internet, granted
by default. Therefore, malicious code can be hidden in any ap-
plication which victims are likely to install. This application can
be sandboxed according to the latest Android and iOS security
enhancements. In particular, this application does not have any in-
formation about other running applications or network traffic, and
does not have access to system resources (e.g., over procfs or sysfs).
The attacker only has access to zero-permission sensor information.

In the in-browser scenario, a victim opens a web page under
the attacker’s control. The web page either fully belongs to the

attacker, or contains components from an attacker-controlled server,
similarly to the case when websites include third-party code from
advertisement and analytics services. Such third-party components
can be present on thousands of websites, which makes this scenario
comparably even more scalable. Similarly, we assume that this web
page is sandboxed by the browser from other web pages, processes
and system resources.

In both scenarios, an attacker constantly collects magnetometer
readings and tries to identify opened applications or websites by
applying a supervised learning approach. To achieve this, the at-
tacker needs to perform a training phase, which requires gathering
a sufficient set of labeled traces for each visited website or applica-
tion. A powerful attacker can perform learning on a large number
of devices which he or she owns or accesses using cloud testing
platforms, such as AWS Device Farm [8]. On a victim’s device, the
attacker only collects traces to be classified during the testing phase
and sends them to a server. The attacker may additionally send
information about the victim’s device to a server, to match the
victim’s device with same model of the device that the attacker
trained on, as model-specific classification has a higher success rate
(we evaluate this in Section 5.2). On Android, the device model is
freely accessible by applications through the Build.MODEL prop-
erty; on iOS, it can be retrieved using the UIKit framework and
uname system call. In the in-browser scenario, this device model
can be obtained from the User-Agent HTTP header [13].

Alternatively, for the website fingerprinting case, an attacker
can perform the learning phase directly on the victim’s device.
For this purpose, a malicious application can embed an invisible

WebView [16] component to open all websites from the training
dataset and send the labeled sensor data to an attacker-controlled
server. Although such an approach would provide the most precise
device-specific training dataset, in this case, the application needs
to be actively used in the foreground by the victim for a significant
amount of time.

3.1 Applicability of the scenarios
The in-app and in-browser attack scenarios also differ regarding
their applicability. Due to technical limitations of the Generic Sensor
API discussed in Section 2.1, the magnetometer can only be accessed
from foreground browser tabs. Therefore, the in-browser scenario
can only be used to identify either background activities, or websites
and applications opened side by side with the recording web page,
in so-called split screen mode.

In the in-app scenario, the time frame during which the ma-
licious application can gather magnetometer traces depends on
the platform and OS version. Starting from Android 8, the back-
ground execution of applications is limited to several minutes after
the last user interaction with the application [9]. In the newest An-
droid 9, sensors cannot be accessed in the background by default [1].
To be able to continuously record sensors in the background on
Android 8 and 9, the attacker needs to declare a so-called Fore-
groundService [14], which results in a visible user notification. This
notification, however, can be masqueraded as a seemingly benign
functionality which needs to be constantly running, e.g., a fitness
activity tracker.

Similarly to Android 8 and newer, execution of iOS applications
is suspended shortly after being moved to the background (start-
ing from iOS 5). Furthermore, the iOS platform does not provide a
functionality to keep the background application active for an arbi-
trary amount of time. However, execution time can be granted to
background applications when they perform specific set of actions,
e.g. playing audio, receiving location updates, processing updates
from a server or reacting to remote push notifications [6].

Nevertheless, in all cases, the attacker would be able to classify
applications or webpages opened shortly after the victim leaves
a malicious application, classify background activities, or activity
opened in split screen mode. Table 1 summarizes the differences
between the in-app and in-browser scenarios.

3.2 Additional assumptions
Following other works on website and application fingerprinting,
we discuss several additional assumptions [33]. In this section, we
reason about these assumptions with regard to our scenarios, and
show that many of them can be encountered on modern mobile
platforms, in comparison to traditional desktop systems.

First, it is typically assumed that users open applications (web-
sites) sequentially and have only a single active application (website)
open at a time. This assumption is reasonable for our scenarios, as
on mobile devices a user can not keep more than two applications
in the foreground at a time, with two only in split-screen mode.
Furthermore, modern mobile browsers significantly limit JavaScript
execution in background tabs or even completely prevent it, to re-
duce power consumption. As a result, in a general case only one

application remains active at a time, and, in case of a web browser,
only one tab can be active.

Second, we assume that there is no user-invoked activity in the
background. As described in Section 3.1, modern Android and iOS
systems limit execution time of background processes. We con-
firmed that these limitations result in low average background
activity. We performed the test measurement of the average CPU
activity over a period of 24 hours on two devices with numerous ap-
plications installed and the recording application in the foreground.
As a result, we obtained the average CPU utilization of only 1.9%,
with the standard deviation of 1.7%. Furthermore, in the course
of our experiments we did not take any measures to specifically
prevent background activity. We performed our measurements on
unmodified smartphones, with up to 60 additional popular applica-
tions installed. These applications could potentially generate CPU
noise in the background during the continuous recording (over 30
hours of recording per device and tested scenario). Nevertheless,
the high classification rates show that these activities do not signif-
icantly affect the recording traces. Overall, we can expect that the
impact of background acitivtiy on the classification is low.

Third, we present evaluation results under the assumption that
websites (applications) do not change over time. As observed in our
experiments and other works (e.g., see [33, 52]), this assumption
does not hold for websites, and the attacker needs to periodically
re-run the learning phase. However, we observed that traces from
applications remain stable unless they get updated. In addition,
configuration options of the browser are comparably limited on
mobile devices, so it is easier for the attacker to replicate the user
client-side settings.

Finally, it is generally assumed that the attacker can detect the
beginning and end of each activity to be classified. In practice, this
can be hard to achieve: In our case, any CPU activity performed
on a device can cause magnetic disturbances. As one potential
solution, we show in Section 4.4 that the attacker can identify
potential time points when the target activity could have started by
computing the cross-correlation with the predefined pattern, and
run the classification only at these specific points.

Apart from these assumptions, typically addressed in works on
website and application fingerprinting, in this work we additionally
assume that the victim is not actively moving the device, as move-
ments affect magnetometer data. In Section 5.5, we evaluate the
impact of minor movements on the classification accuracy when
the smartphone is being held in hand. Furthermore, in Section 4.5,
we propose an approach how the attacker can identify and filter
out sensor readings which are disturbed by movements.

As a result, we believe that our scenarios are realistic under given
assumptions.

4 ATTACK DETAILS
In this section, we discuss implementation details about how data
was collected, its pre-processing, feature extraction and classifi-
cation, describe approaches to identify the target activity in the
continuous measurement stream and to identify traces disturbed
by device movements.

Table 1: Comparison between the in-app and in-browser attack scenarios

In-app scenario In-browser scenario

Recorder native app web page
Sensor access Sensor or Core Motion frameworks Generic Sensor API
Sampling rate 50–100Hz 10Hz
Background recording Android ≤ 7: full

Android 8–9: partial (or full with notification)
iOS 5 and newer: partial

n/a

Attack code distribution Application markets Phishing web links or
3rd-party JavaScript inclusions

Scalability medium high

4.1 Data collection
To collect a large set of labeled traces in the learning phase, we
trigger opening applications and websites from our datasets in an
automated and controllable way, using the Android Debug Bridge
(adb) [2] tool from the Android SDK. Our service script opens each
application from the dataset, waits for a predefined duration, and
closes the target application. Similarly, for website fingerprinting,
the service script opens the Chrome browser and the corresponding
website. Additionally, we implement opening websites in a separate
application with an embedded WebView component. It allows us to
evaluate the website fingerprinting in the cloud testing platforms,
such as the AWS Device Farm [8]. These platforms allow developers
to test mobile applications remotely on multiple devices. However,
they do not provide access to devices through the adb. Therefore,
we could not evaluate the application fingerprinting or use the
Chrome browser on these platforms.

To collect resulting magnetometer disturbance traces, we im-
plemented an Android application which runs in the background,
records 3-axis magnetometer data, and sends it to the attacker-
controlled server. Similarly, for the in-browser scenario, we imple-
mented a web page which records the sensors using the Generic
Sensor API in the mobile Chrome browser, and sends the data to
the server. As a result, for each opened application or website, the
server receives labeled (in the learning phase) or unlabeled (in the
testing phase) sensor measurements.

4.2 Data preprocessing
Subsequently, we convert the raw 3-axis data trace into a discrete-
time one-dimensional trace. For this purpose, we apply Principal
Component Analysis [31] to the data, choosing the first component
as the result. The resulting data represents the one-dimensional
axis with the highest data variance. Assuming that the orientation
of the device is not changed significantly and that the ambient
magnetic field together with EM noise is constant at a given point
in time, this variance represents the vector of the EM emanation
caused by the CPU. The disturbance in the one-dimensional trace
can be directed above or below the baseline level. Therefore, we
add both the original recorded trace and its inverse with regard to
the baseline to the dataset in the training phase of the classifier,
considering both traces as representations of the corresponding
CPU pattern.

Finally, we normalize the result to the range [0–1], so the result-
ing values do not depend on the maximum possible amplitude of
the disturbance (which is device-specific, see Section 5.1). Instead,
the result contains information about the “shape” of the pattern,
which represents the unique CPU activity pattern.

4.3 Feature extraction and data classification
Finally, we divide the resulting normalized discrete-time values
of the axis with the biggest variance into equal-size overlapping
intervals (bins) and calculate the mean value within each bin. These
mean values are used as features for classification. To classify the
traces, we use a Random Forest [20] machine learning classifier,
as it outperforms other algorithms in our experiments in terms of
resulting classification accuracy. We split the dataset into training
set (80%) and test set (20%). The 5-fold cross-validation is performed
on the training set to select optimal hyperparameters using the
grid search, which include the number of estimators in the forest,
the maximum number of features, maximum depth of the tree, and
minimum impurity decrease. The test set was only used to compute
the accuracies when evaluating the classifier in our experiments.

In our experiments, we use the RandomForestClassifier from the
scikit-learn library [41] to perform classification. The values of the
hyperparameters selected after the cross-validation are: n_estimators
= 1100,max_features = log2,max_depth = 50,min_impurity_decrease
= 0.0001. Other hyperparameters are kept as default.

4.4 Identifying target activity during
continuous usage

As we discussed in Section 3.2, the attacker is assumed to know the
beginning of the activity to be classified. In our case, the attacker
needs to continuously monitor magnetometer disturbances, which
can be caused by any application.

However, if the practical goal of the fingerprinting is to identify
whether the victim opens a particular target application or a web-
site (or set of or websites), we propose the following approach to
reduce the amount of data to be processed by the classifier. First,
the attacker can compute an averaged CPU activity pattern for
the target application or website by computing mean values along
multiple traces for this activity (known from the learning phase).
Then, this pattern can be used to calculate the cross-correlation

with the continuously recorded data using the following formula:

ctp [k] =
∑
n

t[n + k]p[n],

where t is a recorded discrete trace and p is the computed pattern.
If the target activity was produced within the recorded interval, a
strong peak is present in the cross-correlation result at the corre-
sponding time point. In practice, however, due to noise and slight
changes in the produced activity patterns, cross-correlation results
will not have a single strong peak, but multiple potential peaks.
However, due to similarity in actual and averaged patterns, one can
expect that the actual time point corresponds to one of these peaks.
Therefore, the classification can be run only at time points where
peaks are present in the cross-correlation result with a predefined
threshold. This threshold sets a trade-off between the number of
peaks and the accuracy of peak detection.We evaluate this approach
in Section 5.4.

Interestingly, for website fingerprinting, an attacker can also
perform this step on recorded data to first detect the web browser
application to be opened (as an application fingerprinting task), and
then classify the recorded interval after the browser was opened.

4.5 Identifying device movements
If the victim rotates the device, a corresponding change in the global
orientation and relative direction to the magnetic north will cause
a shift in magnetometer readings along three axes. In this case, the
PCA-based trace will no longer represent disturbance exclusively
caused by CPU activity. To identify and filter out traces which are
affected by movements, we propose to analyze the rotation rate
measurements from the gyroscope sensor simultaneously with the
magnetometer. Access to gyroscope also does not require permis-
sions, and its data is not affected by the CPU activity. Therefore,
the attacker can use gyroscope readings to estimate if the device
has been significantly moved.

More specifically, we propose two criteria for identifying traces
affected by movements. The first criterion is the mean amplitude
of the rotation rate along all three axes, which indicates the overall
presence of movements within the recorded interval. The second
criterion is the highest amplitude of the rotation rate, which indi-
cates abrupt change in orientation. If the value computed for any
of two criteria exceeds a predefined threshold, the recorded trace
is considered to be affected by movements, and the trace can be
ignored during the classification. In Section 5.5, we evaluate this
approach for the smartphone being held in hand.

5 EVALUATION
In this section, we identify devices on which magnetometers are
affected by the CPU, evaluate the classification performance, show
the success rate of capturing the target activity, and investigate the
impact of minor movements.

5.1 Information leakage
In this experiment, we examined whether the magnetometer read-
ings on mobile devices are affected by the CPU workload. For this
purpose, we produced a predefined CPU activity pattern on a device
and analyzed resulting sensor disturbances. The pattern consists
of alternating high and low CPU loads lasting for 2 seconds. To

produce high loads, we concurrently ran so-called busy waiting
loops in a number of threads, equal to the number of available
logical cores on a device, utilizing up to 100% of the CPU time. To
produce low loads, we paused the execution.

Afterwards, we calculated the correlation between this pattern
and recorded measurements. If the device runs Android 7 or iOS, we
were able to additionally calculate the correlation coefficient with
the actual produced CPU activity pattern, recorded using /proc/stat
or host_processor_info, respectively. Some examples of predefined
pattern and corresponding magnetometer and /proc/stat recordings
are illustrated in Figure 2. We also measured the Signal to Noise
Ratio (SNR), i.e., the ratio between the average amplitude of the
disturbance caused by the high CPU load and the standard deviation
of measurements without CPU activity. It allows us to estimate
how robust the produced disturbance is against environmental
and intrinsic noise. To evaluate a large number of devices, we
conducted measurements using two cloud platforms, Visual Studio
App Center [15] and AWS Device Farm [8]. We selected all available
devices running Android 7 or higher, and all devices running iOS
11 or higher. Additionally, five devices were used in the lab in a
typical office environment. We could not control the environment
of the devices in the cloud (such as noise), and tested them as is.

We found that magnetometers on 56 out of 80 devices are af-
fected by the CPU activity. Results for selected devices are shown in
Table 2, the full list is provided in Appendix A. On these devices, the
disturbance clearly correlates with the CPU activity (with correla-
tion scores over 80% on average). On most of the devices, the signal
exceeds noise. In further experiments, we confirmed that a SNR of
≈4dB is sufficient to establish fingerprinting. Magnetometers on
other 24 devices, listed in Appendix A, however, were not affected
by CPU activity.

As one can see from both tables, the sensor model does not
indicate whether the magnetometer is affected by the CPU: For ex-
ample, sensors AKM AK09915 and AKM AK0991X can be found on
both affected and not affected devices. We believe that the reaction
mostly depends on the physical location of the sensor with regard
to the CPU and power wires, and applied shielding.

As a result, we believe that the attack is practical, since modern
popular devices (e.g., recently released smartphones Google Pixel
3, Samsung Galaxy S10, and iPhone XS) are all affected.

5.2 Classification results
In this experiment, we evaluated the classification accuracy of our
attack in a so-called closed-world scenario, when the attacker aims
to identify the visited website (application) among a predefined list
of websites (applications).

For website fingerprinting, we collected magnetometer and CPU
utilization traces during retrieval of the 50 most popular websites
from the Alexa Top 500 Global Sites list [17], merging websites
with multiple domains together (e.g., google.*). We collected 175
traces per website, with a duration of 12s each. Similarly, for appli-
cation fingerprinting, we collected traces of 65 applications being
launched, 175 traces per application, with a duration of 12s each.
The applications were taken from the list of popular Android ap-
plications [3]. A full list of used websites and applications, as well
as classification results for individual websites and applications,

Table 2: Selection of devices on which sensor measurements correlate with CPU
activity. The full list of affected devices is presented in Appendix A. The table
shows the cross-correlation between sensor data and expected CPU activity pattern
(Corr.Pattern); for Android≤7 and iOS, also between sensor data and actual CPU loads
(Corr.CPU), as well as SNR ratios.

Smartphone Setupa Magnetometerc Correlation SNR,
Pattern CPUb dB

Android
Google Pixel V,A,L AKM AK09915 0.86 0.89 14.7
Google Pixel 2 V,A,L AKM AK09915 0.78 — 10.8
Google Pixel 3 V,A STMicro LIS2MDL 0.90 — 14.2
Google Pixel C V Google CROSEC 0.91 — 27.4
Google Pixel XL V,A AKM AK09915 0.83 0.95 12.2
Huawei Mate 20 Pro V AKM 0.81 — 20.1
HTC U Ultra V AKM AK09915 0.95 0.96 28.6
HTC U12+ V AKM AK09915 0.60 — 7.1
LG Nexus 5X V,L Bosch BMM150 0.88 0.93 15.5
LG V30 V AKM LGE 0.93 0.96 22.6
OnePlus 3 V MEMSIC MMC3416PJ 0.92 0.95 14.7
Samsung Galaxy Note 9 V,A AKM AK09918C 0.52 — 4.1
Samsung Galaxy S9+ V,A AKM AK09916C 0.55 — 4.2
Samsung Galaxy S10 V,A AKM AK09918C 0.65 — 7.9
Sony Xperia 10 Plus V GlobalMEMS GMC306 0.78 — 8.8
Xiaomi Mi A1 V AKM AK09918 0.82 — 11.0

iOS
iPad Air 2 V,A Unknown 0.84 0.42 13.0
iPad Mini 3 V Unknown 0.95 0.96 16.8
iPad Pro 12.9 V,A AKM AK8789 0.93 0.63 16.3
iPhone 5S V,A AKM AK8963 0.89 0.80 12.1
iPhone SE V Alps HSCDTD007 0.91 0.87 19.2
iPhone 6 A AKM AK8963 0.70 0.59 8.4
iPhone 6S V,A,L Alps HSCDTD007 0.81 0.81 20.3
iPhone 7 V,A,L Alps HSCDTD008A 0.89 0.85 11.0
iPhone 8 Plus V,A Alps e-Compass 0.87 0.81 12.0
iPhone X V,A Unknown 0.77 0.74 22.5
iPhone XR V,A Unknown 0.88 0.86 16.9
iPhone XS V,A Unknown 0.75 0.72 12.1

a V — Visual Studio App Center; A — AWS Device Farm; L — lab
b CPU utilization data is available only on devices running Android ≤ 7 (over /proc/stat) and iOS (over host_processor_info).
c For Android devices, information is available from the Sensor API. For iOS devices, information from publicly available
online resources is used.

0 10 20 30
Time (s)

0.00

0.25

0.50

0.75

1.00

C
PU

lo
ad

(t
o

be
pr

od
uc

ed
)

(a) pattern

0 10 20 30
Time (s)

−2

0

2

4

PC
A

(m
T

)

(b) sensor data

0 10 20 30
Time (s)

0.00

0.25

0.50

0.75

1.00

C
PU

lo
ad

(c) /proc/stat data

Figure 2: Example of the expected
CPU pattern to be produced (a),
recorded sensor data (b), and
actual CPU pattern recorded
through /proc/stat (c).

are provided in Appendix A. All traces were collected on a Google
Pixel 2 smartphone lying on a table in the office environment.

Afterwards, we ran the classification using both sensor and
/proc/stat data. The results in terms of classification accuracy are
shown in Table 3. As we can see, the classifier performs with an
accuracy of over 80% for website and application fingerprinting.
Notably, the proposed approach has a similar performance in com-
parison to the classification based on actual CPU activity collected
through /proc/stat. These results indicate that the magnetometer-
based side channel leaks sufficient information about CPU activity.

Classification accuracies for different setups are also compared
in Table 3. More specifically, we separately tested website retrieval

in an embedded WebView component with cache disabled, as well
as using a full mobile Chrome web browser with cache enabled.
As one can see, the classification results are similar for both cases.
However, the caching does affect the resulting patterns. We also
achieved 86.7% accuracy with web-based recording of sensors using
Generic Sensor API, which proves the applicability of our method
to the in-browser scenario.

Additionally, we evaluated the classifier on a larger dataset. We
increased the number of websites to 100 and repeated the experi-
ment on a single device in the in-app scenario with an embedded
WebView component. The classifier performed with an accuracy of
87.6%, comparable to 90.5% in the initial setup (see Table 3).

Table 3: Classification accuracy for website and application
fingerprinting in the in-app and in-browser scenarios com-
pared to classification using /proc/stat data. Traces have
been collected on a Google Pixel 2 smartphone in the lab
environment.

Dataset Setup Browser Sampling Accuracy,
Rate, Hz %

Website fingerprinting
sensor in-app Webview 100 90.5
sensor in-app Chrome 100 74.9
sensor in-browser WebView 10 86.7
cpu in-app Webview 50 89.0

Application fingerprinting
sensor in-app 100 90.0
cpu in-app 50 95.8

Table 4: Classification accuracy for website fingerprinting
in the in-app scenario for several smartphones, for intra-
device and inter-device modes.

Device Setupa Accuracy, %
intra-device inter-device

Google Pixel XL V 62.5 53.2
Google Pixel 2 L 90.5 83.4
Google Pixel 3 V 83.6 80.8
HTC U12+ V 86.6 80.9
Samsung Galaxy Note 9 V 86.4 82.0
Samsung Galaxy S9+ V 81.9 78.1
a V — Visual Studio App Center; L — lab

Afterwards, we ran the website fingerprinting experiment on
five other smartphones in the cloud environment. We calculated the
success rates for intra-device (with a training and testing performed
on individual devices) and inter-device (with a training phase per-
formed on traces from all devices, and testing on individual devices)
modes. The results are summarized in Table 4. Google Pixel XL
and Samsung smartphones performed worse than other devices
due to the lower sampling rate and the lower SNR ratio, (see Sec-
tion 5.1), respectively. The activity patterns are also device-specific.
Therefore, the attacker may need to train the classifier on numerous
devices or take into account the target device model.

Finally, we evaluated how the sampling rate of sensor data grad-
ually affects the classification accuracy. For this purpose, we further
decreased the sampling rate for the dataset of websites recorded in
the in-browser scenario and calculated the resulting classification
accuracies. Figure 3 shows the results. As one can see, the sampling
rate needs to be reduced to less than 1 Hz in order to make the
attack impractical.

5.3 Open-world scenario
In this section, we evaluate our classifier in a so-called open-world
scenario. In comparison to the closed-world scenario, (evaluated in
Section 5.2), a victim can visit a much larger set of websites not
known to the attacker. Consequently, the attacker cannot generalize
the classifier and identify every visited website. Instead, the attacker

0 1 2 4 6 8 10
Sampling rate (Hz)

0

20

40

60

80

A
cc

ur
ac

y
(%

)

2.6

22.2

40.6

64.4

77.4 81.1
86.7

Figure 3: Classification accuracy of website fingerprinting
depending on a sampling rate.

aims to identify whether a victim visits specific websites, further
referred to as monitored websites. To perform the experiment, we
first collected traces for 50 most popular websites, 175 traces per
website, to train the classifier similarly to the closed-world scenario.
However, in this case, we selected five the most popular websites
to be five monitored classes. Other 45 websites were labeled as not
monitored, i.e., they belonged to a separate class. For testing, we
used another list of popular websites [12], which is larger than the
Alexa list. We collected one trace for each of the 7,500 most popular
websites, excluding 50 websites (or their alternative domains) used
in the training phase. Finally, we collected 40 traces of each of the
five monitored websites, to have a total of 7,700 traces in the testing
set. All traces were collected on a Google Pixel 2 smartphone in the
in-app recording mode.

To evaluate the results, for each class we calculated the precision
and recall using the following formulae:

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

where TP (True Positives) is the number of correctly classified
traces of the considered class, FP (False Positives) — the number of
traces of other classes which are incorrectly classified as the consid-
ered class, FN (False Negatives) — the number of traces incorrectly
classified as the other class. The previously used overall classifi-
cation accuracy (99.6% in this case) is not a practical metric for
the open-world experiment, as the classes are imbalanced, i.e., the
number of traces for non-monitored websites significantly exceeds
the number of traces for monitored websites.

Table 5 shows the classification results. We can see that the
average achieved recall of 68.6% is lower in comparison to the closed-
world scenario, but is still practical. The precision is, however,
relatively high: 92.2% for all websites and 90.9% for monitored
classes. The high precision is especially valuable in the open-world
scenario, as it ensures the attacker that the victim did visit the
monitoredwebsite if it was identified by the classifier. As a result, we
believe that our approach is applicable to the open-world scenario.

Table 5: Classification results for the open-world scenario, in
terms of the precision and the recall for the five monitored
websites.

Website Precision,% Recall,% F1 score,%

facebook.com 95.5 48.8 64.6
google.com 100.0 41.9 59.0
taobao.com 84.6 51.2 63.8
wikipedia.org 77.1 86.0 81.3
youtube.com 97.3 83.7 90.0

Average (monitored) 90.9 62.3 71.7
Average (overall) 92.2 68.6 76.3

5.4 Continuous usage
In this experiment, we evaluated the ability of the attacker to de-
tect the starting point of the trace to be classified in a continuous
recording stream. The detection is performed by calculating the
cross-correlation with the predefined pattern, as we described in
Section 4.4. We evaluated the approach in the scope of application
fingerprinting and chose the Chrome browser as the target activity.
We made 50 continuous recordings lasting 100s each, and within
every recording we opened the target application and two other
applications at specific non-overlapping time points. The applica-
tions for each recording were randomly chosen from the dataset.
This way, traces contained the pattern corresponding to the target
application, as well as noise from other activities. For each record-
ing, we calculated the cross-correlation between the recorded trace
and a pattern computed for the target application.

Then, we detected local maxima (peaks) in the result. The set of
peaks was filtered according to three threshold parameters: peak
height, prominence and width. We considered a peak as true posi-
tive if it was discovered within a 1s-interval around the time point
when the target application was actually opened. Other detected
peaks were considered as false positives. A false negative was as-
sumed if there was no peakwithin the corresponding interval. In the
end, we calculated the classification precision and recall according
to these definitions, to indicate how effectively cross-classification
can narrow the search area. For 50 recordings and our set of pa-
rameters, we achieved a precision of 24,5% and 72.9% recall. The
attacker can vary parameters of the cross-correlation to increase
the recall at the expense of precision (i.e., discover more peaks,
including false positives), and vice versa.

Finally, we ran the classification at all discovered time points in-
cluding false positives. This step ensures that the cross-correlation
approach in the first step identifies the time points with sufficient
precision, so that the classifier can correctly identify the true posi-
tive samples. The accuracy in our experiment reached 81%, which
is comparable to the 90% achieved in the closed-world experiment
with a known beginning point. The decrease is observed due to
a number of false positives at time points corresponding to noise,
as the classifier in the closed-world scenario has not being trained
on noise data. As a result, the experiment shows that the attacker
can efficiently reduce the amount of data to be processed using the
proposed approach.

Figure 4: Distribution of traces with regard to their
gyroscope-based metrics for movements. Numerous
wrongly classified traces lie outside the highlighted thresh-
old area.

5.5 Robustness to movements
In this experiment, we evaluated the classification accuracy when
the smartphone is being held in hand, and our approach to identify
traces affected by movements described in Section 4.5. We used
the classifier trained for the website fingerprinting in the closed-
world scenario on a static device (see Section 5.2). Afterwards, we
recorded a total of 500 test traces while freely holding a smartphone
in hand.

When the classifier was applied to the whole test dataset with-
out filtering, the overall accuracy dropped to 64.8%, indicating that
movements do affect the measurements. However, wrongly iden-
tified traces could be filtered out using the proposed approach: in
Figure 4, one can see that for numerous wrongly classified traces
the thresholds for indicating movements are exceeded. By applying
the filtering based on the thresholds before the classification, 21% of
the measurements were identified as affected by movements. After
removing affected traces from the dataset, the accuracy reached
73.3%. The accuracy is lower in comparison to the accuracy achieved
for the static device (90.5%), but remains practical. Nevertheless,
a larger user study and more detailed analysis of the impact of
movements may be needed to prove the wide applicability of the
approach.

6 RELATEDWORK
6.1 Website and app fingerprinting on mobile

devices
Researchers have shown that different side-channel information
can be used to infer applications and websites opened on a smart-
phone. Jana and Shmatikov [32] observed the memory footprint of a
browser (available through procfs) to enable website fingerprinting.
Zhou et al. [55] and Spreitzer et al. [45] showed that the Android
data-usage statistics API provides precise information about net-
work activity and allows to fingerprint applications and websites.
Gulmezoglu et al. [29] used information about system performance
counters to establish website fingerprinting, whereas Diao et al. [27]

Table 6: Comparison with other related works exploiting side-channel information leakage for website and/or application
fingerprinting.

Work Attacka Leakage source Platform Blocked

Jana & Shmatikov [32] WF memory footprint mobile apps Android 7
Zhou et al [55] AF data-usage statistics mobile apps Android 7
Spreitzer et al. [45] WF data-usage statistics mobile apps Android 7
Gulmezoglu et al. [29] WF hardware perf. events desktop apps Android 7
Chen et al. [24] AF power traces (SW) mobile apps Android 8
Clark et al. [26] WF power traces (HW) desktop apps Android 8b

Yang et al. [52] WF power traces (HW) mobile apps Android 8b
Diao et al. [27] AF system interrupts mobile apps Android 8
Spreitzer et al. [47] AF&WF several Android APIs mobile apps not blocked
Spreitzer et al. [46] AF&WF several procfs resources mobile apps not blocked
Shusterman et al. [43] WF cache occupancy desktop browsersc not blockedc
Our work AF&WF magnetometer data mobile apps & browsers not blocked

a WF — website fingerprinting; AF — application fingerprinting
b Attacks use power traces collected using hardware; prevention is specified for sysfs traces
c Evaluation is presented for desktop browsers, but potentially generalizes for mobile platforms

exploited information about system interrupts to establish appli-
cation fingerprinting, with both leakage sources available through
procfs. Several researchers showed that power consumption traces,
collected through sysfs [24, 51], using a malicious charger [51] or
a malicious battery [34], are highly correlated with the CPU ac-
tivity pattern, and therefore, also can be used as leakage source
to infer opened applications [24, 51] and websites [26, 34, 52]. Re-
cently, Spreitzer et al. discovered multiple leakage sources available
through procfs [46] and Android APIs [47], which allow inferring
website and application activity. Finally, several works have been
presented on microarchitectural side channels, which can be used
to infer information about visited websites [35, 40]. In the most
recent work, Shusterman et al. [43] demonstrated the cache oc-
cupancy side channel to establish website fingerprinting in the
in-browser scenario. Although the results were presented for the
desktop platform, the approach may be applied to mobile devices.

Table 6 summarizes these prior works and compares them with
our approach. As we can see, most of the leakage sources are already
blocked in the latest Android OS. Furthermore, currently available
procfs resources can be blocked in future versions of Android with-
out serious impact on existing applications as they provide system-
specific technical information. In contrast, our attack works on the
latest Android 9 and access to magnetometer cannot be completely
blocked, since numerous applications rely on magnetometer values
(e.g., navigation applications). Furthermore, almost all prior works
require a malicious application to be installed on a device, while
our attack can be launched from a web page.

6.2 Exploiting the reaction of magnetometers
to EM activity

The reaction of magnetometers to electromagnetic activity emit-
ted by computer components has been used to establish inter-
device covert channels. Researchers used magnetometers to receive
covert signals from a nearby computer encoded into hard drive
activity [19], CPU activity [30], and combined I/O activity [38].
Matyunin et al. [37] proposed a magnetometer-based intra-device
covert channel on smartphones. The authors demonstrated that

the magnetometer can be affected by the peak CPU activity, emit-
ted by a webpage. In a recent work [25], Cheng et al. exploited
the reaction of magnetometers to EM activity to infer applications
and webpages opened on victim’s laptop located in victinity to the
attacker’s smartphone. In this work, we show that magnetometer
disturbance on mobile devices accurately represents the patterns
of the internal CPU activity, evaluate this effect on a large number
of modern devices, and show that a malevolent application on a
victim’s smartphone can infer running activity, namely, to perform
application and website fingerprinting.

7 COUNTERMEASURES
There are several possibilities to prevent the presented information
leakage through magnetometer disturbance:

• Physical shielding with ferromagnetic materials is the most
straightforward way to limit the susceptibility of the sensor
to electromagnetic activity. However, this measure opposes
an industry trend of making smartphones thinner and lighter,
and cannot protect existing devices from the attack.

• As we have discovered in our experiments in Section 5.1,
some smartphones and tablets actually do not react to CPU
activity, presumably due to the sensor location relative to the
CPU or power supply components. We, therefore, believe
that the location of the sensors should be taken into account
when designing the layout of the smartphone motherboard.

• Based on our evaluation in Section 5.2, further limiting the
sensor sampling rate to 1 Hz significantly reduces the clas-
sification accuracy of fingerprinting. However, with such a
lower sampling rate it may be still possible to infer informa-
tion about more coarse-grained activities. Furthermore, it
may negatively affect the performance of legitimate applica-
tions.

• An explicit user permission can be introduced to limit ac-
cess to magnetometers. However, users may not correctly
perceive potential privacy threats emerging from sensors in
mobile devices [39]. Therefore, an explanation of potential

risks might be needed. Moreover, a lot of mobile devices in
use run outdated operating system versions [10].

• To limit the attack surface of our attack, access to magne-
tometers can be restricted for applications opened in the
split-screen mode and can immediately be blocked when the
application goes to the background.

The described countermeasures would require hardware or soft-
ware changes, may have performance or production cost draw-
backs, and require careful design decisions. In particular, we are
concerned about the ongoing deployment of the Generic Sensor
API in browsers as access to the magnetometer from the browser
significantly extends the attack surface. We recommend to require
an explicit permission to access the magnetometer on web pages.
An alternative recommendation would be to further reduce the
sampling rate.

8 DISCUSSION
In this section, we discuss some related aspects and directions for
future work.

First, as shown in other works on website fingerprinting (e.g., [33,
50]), aging of sampling data affects classification accuracy. There-
fore, the attacker needs to repeat the learning phase periodically.
One interesting direction for future work would be a detailed inves-
tigation of which elements on a web page affect the classification
the most when being changed, for different fingerprinting meth-
ods. For example, increasing the web page size by extending the
text content can affect fingerprinting based on traffic analysis, but
may have no substantial effect on the sensor disturbance in our
approach, since text rendering is computationally inexpensive for
the CPU.

Second, in principle, magnetometer sensors are suscpetible to ex-
ternal electromagnetic noise. However, as shown in other works [30,
38], magnetometers are affected by the noise from nearby comput-
ers only at short distances (≤15cm). We performed all experiments
in a typical office environment with natural arrangement of multi-
ple electronic devices, such as laptops, WiFi access points, and other
smartphones. As our results indicate, activity of these devices did
not impair the performance of our approach. Nevertheless, system-
atic analysis of potential external noise sources and their impact
on classification can be performed as future work.

Finally, it would be interesting to combine our approach with
works exploiting other side-channel information on smartphones,
especially leakages of other nature such as memory access statis-
tics. In this way, a feature set combining different side-channel
information can potentially improve the classification accuracy.

9 CONCLUSION
In this work, we presented a method to identify running appli-
cations and websites on mobile devices based on the reaction of
magnetometers to the internal CPU activity. We observed this side
channel on a large number of modern devices and demonstrated
that this information leakage is sufficient to identify opened web-
sites and applications. The presented method does not require any
user permissions and can be run in both in-app and in-browser
scenarios, posing a significant threat against the privacy of mobile
users.

REFERENCES
[1] [n.d.]. Android 9 Behaviour changes: all apps. https://developer.android.com/about/

versions/pie/android-9.0-changes-all
[2] [n.d.]. Android Debug Bridge (adb) | Android Developers. https://developer.android.

com/studio/command-line/adb
[3] [n.d.]. Android market history data and ranklists | 2011 - 2018. https://www.

androidrank.org/
[4] [n.d.]. Android Open Source Project: Bug 23310674: Enable hidepid=2 on proc.

https://android-review.googlesource.com/c/platform/system/core/+/181345
[5] [n.d.]. Apple Developer Documentation | Core Motion Framework. https:

//developer.apple.com/documentation/coremotion
[6] [n.d.]. Apple Developer Documentation | Preparing Your UI to Run in the Back-

ground. https://developer.apple.com/documentation/uikit/app_and_scenes/preparing_
your_ui_to_run_in_the_background

[7] [n.d.]. Application Sandbox | Android Open Source Project. https://source.android.
com/security/app-sandbox

[8] [n.d.]. AWS Device Farm. http://aws.amazon.com/device-farm/
[9] [n.d.]. Background Execution Limits | Android Developers. https://developer.

android.com/about/versions/oreo/background
[10] [n.d.]. Distribution dashboard | Android Developers. https://developer.android.com/

about/dashboards/
[11] [n.d.]. Google Issue Tracker: 37140047: Android O prevents access to /proc/stat.

https://issuetracker.google.com/issues/37140047
[12] [n.d.]. Majestic Million - Majestic. https://majestic.com/reports/majestic-million
[13] [n.d.]. MDN web docs: User-Agent - HTTP. https://developer.mozilla.org/en-US/

docs/Web/HTTP/Headers/User-Agent
[14] [n.d.]. Sensors overview | Android Developers. https://developer.android.com/guide/

topics/sensors/sensors_overview
[15] [n.d.]. Visual Studio AppCenter. https://visualstudio.microsoft.com/app-center/
[16] [n.d.]. WebKit WebView | Android Developers. https://developer.android.com/

reference/android/webkit/WebView
[17] Alexa Internet, Inc. [n.d.]. Alexa Top 500 Global Sites. https://www.alexa.com/

topsites
[18] Apple corp. [n.d.]. iOS Security Guide. https://www.apple.com/business/site/docs/

iOS_Security_Guide.pdf
[19] Sebastian Biedermann, Stefan Katzenbeisser, and Jakub Szefer. 2015. Hard Drive

Side-Channel Attacks Using Smartphone Magnetic Field Sensors. In Financial
Cryptography and Data Security - 19th International Conference, 2015. 489–496.

[20] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[21] Yongyao Cai, Yang Zhao, Xianfeng Ding, and James Fennelly. 2012. Magnetometer

basics for mobile phone applications. Electron. Prod.(Garden City, New York) 54, 2
(2012).

[22] Aaron Carroll and Gernot Heiser. 2010. An Analysis of Power Consumption in a
Smartphone. In 2010 USENIX Annual Technical Conference, Boston, MA, USA.

[23] Qi Alfred Chen, Zhiyun Qian, and ZhuoqingMorley Mao. 2014. Peeking into Your
App without Actually Seeing It: UI State Inference and Novel Android Attacks.
In Proceedings of the 23rd USENIX Security Symposium. 1037–1052.

[24] Yimin Chen, Xiaocong Jin, Jingchao Sun, Rui Zhang, and Yanchao Zhang. 2017.
POWERFUL: Mobile app fingerprinting via power analysis. In INFOCOM 2017-
IEEE Conference on Computer Communications, IEEE. IEEE, 1–9.

[25] Yushi Cheng, Xiaoyu Ji, Wenyuan Xu, Hao Pan, Zhuangdi Zhu, Chuang-Wen You,
Yi-Chao Chen, and Lili Qiu. 2019. MagAttack: Guessing Application Launching
and Operation via Smartphone. In Proceedings of the 2019 ACM Asia Conference
on Computer and Communications Security, AsiaCCS 2019, Auckland, New Zealand,
July 09-12, 2019. 283–294. https://doi.org/10.1145/3321705.3329817

[26] Shane S Clark, Hossen Mustafa, Benjamin Ransford, Jacob Sorber, Kevin Fu, and
Wenyuan Xu. 2013. Current events: Identifyingwebpages by tapping the electrical
outlet. In European Symposium on Research in Computer Security. Springer, 700–
717.

[27] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. 2016. No pardon for
the interruption: New inference attacks on android through interrupt timing
analysis. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 414–432.

[28] Eric Enge. [n.d.]. Mobile vs Desktop Usage in 2018: Mobile takes the lead. https:
//www.stonetemple.com/mobile-vs-desktop-usage-study/

[29] Berk Gülmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar. 2017.
PerfWeb: How to Violate Web Privacy with Hardware Performance Events. In
22nd European Symposium on Research in Computer Security, Oslo, Norway. 80–97.

[30] Mordechai Guri, Andrey Daidakulov, and Yuval Elovici. 2018. Magneto: Covert
channel between air-gapped systems and nearby smartphones via cpu-generated
magnetic fields. arXiv preprint arXiv:1802.02317 (2018).

[31] H. Hotelling. 1933. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology 24, 6 (1933), 417–441.

[32] Suman Jana and Vitaly Shmatikov. 2012. Memento: Learning Secrets from Process
Footprints. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012,
San Francisco, California, USA. 143–157.

[33] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Díaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In Proceedings of the 2014

https://developer.android.com/about/versions/pie/android-9.0-changes-all
https://developer.android.com/about/versions/pie/android-9.0-changes-all
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://www.androidrank.org/
https://www.androidrank.org/
https://android-review.googlesource.com/c/platform/system/core/+/181345
https://developer.apple.com/documentation/coremotion
https://developer.apple.com/documentation/coremotion
https://developer.apple.com/documentation/uikit/app_and_scenes/preparing_your_ui_to_run_in_the_background
https://developer.apple.com/documentation/uikit/app_and_scenes/preparing_your_ui_to_run_in_the_background
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
http://aws.amazon.com/device-farm/
https://developer.android.com/about/versions/oreo/background
https://developer.android.com/about/versions/oreo/background
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://issuetracker.google.com/issues/37140047
https://majestic.com/reports/majestic-million
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview
https://visualstudio.microsoft.com/app-center/
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://doi.org/10.1145/3321705.3329817
https://www.stonetemple.com/mobile-vs-desktop-usage-study/
https://www.stonetemple.com/mobile-vs-desktop-usage-study/

ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014. 263–274.

[34] Pavel Lifshits, Roni Forte, Yedid Hoshen, Matt Halpern, Manuel Philipose, Mohit
Tiwari, and Mark Silberstein. 2018. Power to peep-all: Inference Attacks by Mali-
cious Batteries on Mobile Devices. Proceedings on Privacy Enhancing Technologies
2018, 4 (2018), 141–158.

[35] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium.

[36] Tina Lu. [n.d.]. Almost Half Of Smartphone Users Spend More Than 5
Hours A Day on Their Mobile Device. https://www.counterpointresearch.com/
almost-half-of-smartphone-users-spend-more-than-5-hours-a-day-on-their-mobile-device/

[37] Nikolay Matyunin, Nikolaos Athanasios Anagnostopoulos, Spyros Boukoros,
MarkusHeinrich, André Schaller, MaksimKolinichenko, and Stefan Katzenbeisser.
2018. Tracking Private Browsing Sessions using CPU-based Covert Channels. In
WiSec.

[38] Nikolay Matyunin, Jakub Szefer, Sebastian Biedermann, and Stefan Katzenbeisser.
2016. Covert channels using mobile device’s magnetic field sensors. In ASP-DAC
2016, Macao.

[39] Maryam Mehrnezhad, Ehsan Toreini, Siamak F. Shahandashti, and Feng Hao.
2018. Stealing PINs via mobile sensors: actual risk versus user perception. Int. J.
Inf. Sec. 17, 3 (2018), 291–313.

[40] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications. ACM SIGSAC CCS (2015). arXiv:1502.0737

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[42] Alexander Shalamov and Mikhail Pozdnyakov. [n.d.]. Sensors for the Web!
https://developers.google.com/web/updates/2017/09/sensors-for-the-web

[43] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through the
Cache Occupancy Channel. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 639–656.

[44] Laurent Simon,Wenduan Xu, and Ross Anderson. 2016. Don’t Interrupt MeWhile
I Type: Inferring Text Entered Through Gesture Typing on Android Keyboards.
Proceedings on Privacy Enhancing Technologies 2016, 3 (2016), 136–154.

[45] Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Mangard. 2016.
Exploiting Data-Usage Statistics for Website Fingerprinting Attacks on Android.
In Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and
Mobile Networks.

[46] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan Mangard. 2018.
ProcHarvester: Fully Automated Analysis of Procfs Side-Channel Leaks on An-
droid. In Proceedings of the 2018 on Asia Conference on Computer and Communi-
cations Security.

[47] Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard. 2018. SCAnDroid:
Automated Side-Channel Analysis of Android APIs. In Proceedings of the 11th
ACM Conference on Security & Privacy in Wireless and Mobile Networks. 224–235.

[48] Lexi Sydow and Sam Cheney. [n.d.]. 2017 Retrospective: A Monumental
Year for the App Economy. https://www.appannie.com/en/insights/market-data/
app-annie-2017-retrospective/

[49] RickWaldron, Mikhail Pozdnyakov, and Alexander Shalamov. [n.d.]. Generic Sen-
sor API. W3C Candidate Recommendation. https://www.w3.org/TR/generic-sensor/

[50] Tao Wang and Ian Goldberg. 2013. Improved website fingerprinting on Tor. In
Proceedings of the 12th annual ACM Workshop on Privacy in the Electronic Society,
WPES 2013, Berlin, Germany, November 4, 2013. 201–212. https://doi.org/10.1145/
2517840.2517851

[51] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. 2015. A Study on Power Side
Channels on Mobile Devices. (2015). arXiv:arXiv:1512.07972v1

[52] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and Kiran S Balagani.
2017. On Inferring Browsing Activity on Smartphones via USB Power Analysis
Side-Channel. IEEE Transactions on Information Forensics and Security 12, 5 (2017),
1056–1066.

[53] Kehuan Zhang and XiaoFeng Wang. 2009. Peeping Tom in the Neighborhood:
Keystroke Eavesdropping on Multi-User Systems. In 18th USENIX Security Sym-
posium, Montreal, Canada, August 10-14, 2009, Proceedings. 17–32.

[54] Xiaokuan Zhang, Xueqiang Wang, Xiaolong Bai, Yinqian Zhang, and XiaoFeng
Wang. 2018. OS-level Side Channels without Procfs: Exploring Cross-App In-
formation Leakage on iOS. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_
05B-4_Zhang_paper.pdf

[55] Xiao-yong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFengWang, Carl A. Gunter, and Klara Nahrstedt. 2013. Identity, location,
disease and more: inferring your secrets from android public resources. In ACM
SIGSAC CCS.

https://www.counterpointresearch.com/almost-half-of-smartphone-users-spend-more-than-5-hours-a-day-on-their-mobile-device/
https://www.counterpointresearch.com/almost-half-of-smartphone-users-spend-more-than-5-hours-a-day-on-their-mobile-device/
http://arxiv.org/abs/1502.0737
https://developers.google.com/web/updates/2017/09/sensors-for-the-web
https://www.appannie.com/en/insights/market-data/app-annie-2017-retrospective/
https://www.appannie.com/en/insights/market-data/app-annie-2017-retrospective/
https://www.w3.org/TR/generic-sensor/
https://doi.org/10.1145/2517840.2517851
https://doi.org/10.1145/2517840.2517851
http://arxiv.org/abs/arXiv:1512.07972v1
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05B-4_Zhang_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05B-4_Zhang_paper.pdf

A APPENDIX

Table 7: Full list of mobile devices on which sensor measurements correlate with CPU activity.

Smartphone Setupa Magnetometerc Correlation SNR,
Pattern CPUb dB

Android
Essential Products PH-1 V AKM AK09915 0.83 — 10.2
Google Pixel V,A,L AKM AK09915 0.86 0.89 14.7
Google Pixel 2 V,A,L AKM AK09915 0.78 — 10.8
Google Pixel 3 V,A STMicro LIS2MDL 0.90 — 14.2
Google Pixel 3 XL V,A STMicro LIS2MDL 0.91 — 15.4
Google Pixel C V Google CROSEC 0.91 — 27.4
Google Pixel XL V,A AKM AK09915 0.83 0.95 12.2
HTC U Ultra V AKM AK09915 0.95 0.96 28.6
HTC U11 V,A AKM AK09915 0.50 — −9.7
HTC U12+ V AKM AK09915 0.60 — 7.1
Huawei Honor View 10 V AKM AK09918 0.81 — 10.8
Huawei Mate 20 Pro V AKM 0.81 — 20.1
Huawei Mate 10 Pro V AKM 0.87 — 13.0
Huawei Nexus 6P V Bosch BMM150 0.85 0.94 14.5
Huawei P10 V AKM 0.84 0.89 15.8
Huawei P20 Pro V AKM 0.60 — 3.4
Huawei P30 Pro V AKM AK09918 0.54 — 4.2
LG G6 V AKM LGE 0.86 0.88 12.1
LG Nexus 5X V,L Bosch BMM150 0.88 0.93 15.5
LG V30 V AKM LGE 0.93 0.96 22.6
Motorola Moto X(4) V MEMSIC MMC3630KJ 0.82 — 4.2
Motorola Moto g(6) V AKM AK09918 0.54 — 2.9
Motorola Moto Z3 Play V AKM AK09915 0.79 — 13.4
OnePlus 3 V MEMSIC MMC3416PJ 0.92 0.95 14.7
OnePlus OnePlus 6T V AKM AK0991X 0.40 — −0.7
Samsung Galaxy A7 V Yamaha YAS539 0.84 — 13.8
Samsung Galaxy Note 8 V,A AKM AK09916C 0.91 0.95 16.3
Samsung Galaxy Note 9 V,A AKM AK09918C 0.52 — 4.1
Samsung Galaxy S7 V Yamaha YAS537 0.73 — 4.5
Samsung Galaxy S9+ V,A AKM AK09916C 0.55 — 4.2
Samsung Galaxy S10E V,A AKM AK09918C 0.77 — 12.3
Samsung Galaxy S10 V,A AKM AK09918C 0.65 — 7.9
Samsung Galaxy XCover4 V AKM AK09916C 0.89 0.72 −1.6
Sony Xperia XZ2 V AKM AK0991X 0.40 — −3.0
Sony Xperia XZ3 V AKM AK0991X 0.49 — 1.7
Sony Xperia 10 Plus V GlobalMEMS GMC306 0.78 — 8.8
Xiaomi Mi A1 V AKM AK09918 0.82 — 11.0
Xiaomi Mi A2 V AKM AK09918 0.79 — 9.7

iOS
iPad Pro 12.9 V,A AKM AK8789 0.93 0.63 16.3
iPad Pro 11 V,A AKM AK8789 0.86 0.58 12.0
iPad Air 2 V,A Unknown 0.84 0.42 13.0
iPad Mini 3 V Unknown 0.95 0.96 16.8
iPhone 5S V,A AKM AK8963 0.89 0.80 12.1
iPhone SE V Alps HSCDTD007 0.91 0.87 19.2
iPhone 6 A AKM AK8963 0.70 0.59 8.4
iPhone 6S V,A,L Alps HSCDTD007 0.81 0.81 20.3
iPhone 6S Plus V Alps HSCDTD007 0.93 0.91 22.9
iPhone 7 V,A,L Alps HSCDTD008A 0.89 0.85 11.0
iPhone 7 Plus V,A Alps HSCDTD008A 0.82 0.76 9.6
iPhone 8 V,A Unknown 0.85 0.88 13.4
iPhone 8 Plus V,A Alps e-Compass 0.87 0.81 12.0
iPhone X V,A Unknown 0.77 0.74 22.5
iPhone XR V,A Unknown 0.88 0.86 16.9
iPhone XS V,A Unknown 0.75 0.72 12.1
iPhone XS Max V,A Unknown 0.76 0.74 11.7

a V — Visual Studio App Center; A — AWS Device Farm; L — lab
b CPU utilization data is available only on devices running Android ≤ 7 (over /proc/stat) and iOS (over host_processor_info).
c For Android devices, information provided by the Sensor API. For iOS devices, information from publicly available online resources is used.

Table 8: Classification results for websites.

Website Precision Recall F1 score

360.cn 0.87 0.83 0.85
accuweather.com 0.82 0.96 0.89
aliexpress.com 1.00 1.00 1.00
alipay.com 0.87 0.87 0.87
amazon.com 0.92 0.97 0.95
ampproject.org 0.86 0.90 0.88
apple.com 0.83 0.85 0.84
baidu.com 0.82 0.91 0.86
bing.com 0.88 1.00 0.93
blogspot.com 0.95 0.93 0.94
csdn.net 0.92 0.80 0.86
ebay.com 0.98 0.92 0.95
facebook.com 0.86 0.78 0.82
google.com 0.74 0.89 0.81
imdb.com 0.98 1.00 0.99
instagram.com 0.96 0.94 0.95
jd.com 0.81 0.96 0.88
linkedin.com 1.00 0.98 0.99
live.com 0.88 0.84 0.86
mail.ru 1.00 1.00 1.00
mi.com 0.98 0.82 0.89
microsoft.com 0.95 0.89 0.92
msn.com 1.00 0.90 0.95
naver.com 1.00 0.98 0.99
netflix.com 0.87 0.79 0.83
office.com 0.81 0.90 0.85
ok.ru 0.95 0.86 0.90
pinterest.com 1.00 0.91 0.96
qq.com 0.83 0.98 0.90
reddit.com 0.93 0.87 0.90
samsung.com 0.98 1.00 0.99
sina.com.cn 0.86 0.87 0.86
sm.cn 0.87 0.81 0.84
sogou.com 0.70 0.92 0.80
sohu.com 0.95 0.95 0.95
spotify.com 0.93 0.89 0.91
store.google.com 0.98 0.89 0.93
taobao.com 0.93 0.86 0.89
tmall.com 0.98 0.96 0.97
twitch.tv 0.94 0.96 0.95
twitter.com 1.00 0.98 0.99
vk.com 0.94 0.87 0.90
weibo.com 0.77 0.79 0.78
whatsapp.com 0.86 0.79 0.83
wikipedia.org 0.91 0.82 0.87
yahoo.co.jp 0.96 1.00 0.98
yahoo.com 0.87 0.97 0.92
yandex.ru 0.97 0.97 0.97
yidianzixun.com 0.89 0.89 0.89
youtube.com 0.89 0.89 0.89

Average 0.91 0.91 0.91

Table 9: Classification results for applications.

Application Precision Recall F1 score

com.UCMobile.intl 0.92 0.85 0.88
com.airbnb.android 1.00 1.00 1.00
com.amazon.mShop.android.shopping 1.00 0.97 0.99
com.android.chrome 0.96 0.96 0.96
com.android.vending 0.97 0.94 0.95
com.booking 0.80 0.97 0.88
com.cleanmaster.mguard 0.91 0.94 0.92
com.cleanmaster.security 0.88 0.98 0.93
com.cmplay.tiles2 0.81 0.90 0.85
com.contextlogic.wish 0.93 0.93 0.93
com.dianxinos.dxbs 1.00 0.98 0.99
com.dianxinos.optimizer.duplay 0.83 0.98 0.90
com.dts.freefireth 1.00 0.94 0.97
com.etermax.preguntados.lite 0.91 1.00 0.95
com.facebook.katana 0.88 0.88 0.88
com.facebook.lite 0.72 0.79 0.76
com.facebook.orca 0.98 0.95 0.97
com.fingersoft.hillclimb 0.96 0.98 0.97
com.firsttouchgames.dls3 0.95 0.54 0.69
com.fungames.sniper3d 0.70 0.78 0.74
com.gameloft.android.ANMP.GloftA8HM 0.89 1.00 0.94
com.gameloft.android.ANMP.GloftDMHM 0.81 0.60 0.69
com.google.android.GoogleCamera 1.00 0.98 0.99
com.google.android.apps.maps 0.93 0.91 0.92
com.google.android.apps.photos 0.96 1.00 0.98
com.google.android.apps.translate 1.00 0.92 0.96
com.google.android.calendar 0.97 0.90 0.94
com.google.android.gm 0.92 0.96 0.94
com.google.android.googlequicksearchbox 0.91 0.93 0.92
com.google.android.play.games 0.90 1.00 0.95
com.google.android.youtube 0.88 0.95 0.91
com.imangi.templerun2 0.70 0.74 0.72
com.instagram.android 0.92 0.90 0.91
com.kiloo.subwaysurf 1.00 0.49 0.66
com.king.candycrushsaga 0.57 0.95 0.71
com.king.farmheroessaga 0.98 0.98 0.98
com.lenovo.anyshare.gps 0.97 0.95 0.96
com.linkedin.android 0.85 0.95 0.90
com.miniclip.eightballpool 0.91 0.96 0.93
com.mobile.legends 0.93 1.00 0.96
com.mxtech.videoplayer.ad 0.96 0.84 0.90
com.nekki.shadowfight 1.00 0.93 0.96
com.ngame.allstar.eu 1.00 0.98 0.99
com.outfit7.mytalkingangelafree 0.88 0.70 0.78
com.outfit7.mytalkingtomfree 0.90 0.91 0.91
com.paypal.android.p2pmobile 0.98 1.00 0.99
com.picsart.studio 0.85 0.83 0.84
com.qihoo.security 0.91 0.98 0.94
com.quvideo.xiaoying 0.98 0.94 0.96
com.roidapp.photogrid 0.94 0.96 0.95
com.skype.raider 1.00 0.85 0.92
com.snapchat.android 0.98 1.00 0.99
com.spotify.music 0.92 0.90 0.91
com.supercell.clashofclans 0.70 0.82 0.75
com.supercell.clashroyale 0.98 0.96 0.97
com.supercell.hayday 0.78 0.90 0.84
com.surpax.ledflashlight.panel 0.97 0.66 0.79
com.tencent.ig 0.92 0.58 0.71
com.tencent.mm 0.92 1.00 0.96
com.tripadvisor.tripadvisor 1.00 1.00 1.00
com.twitter.android 0.95 0.74 0.83
com.waze 0.89 0.98 0.93
com.whatsapp 0.91 0.94 0.93
com.zhiliaoapp.musically 0.73 0.92 0.81
jp.naver.line.android 1.00 0.92 0.96
me.pou.app 0.84 0.97 0.90
net.zedge.android 0.65 0.82 0.73
Average 0.90 0.90 0.90

Table 10: List of mobile devices and their magnetometers not affected by their CPU activity.

Smartphone Setup Magnetometer

Android
Asus ZenFone 5Z V AKM AK0991X
Google Pixel 2 XL V,A AKM AK09915
LGE LG G7 ThinQ V,A AKM LGE
Motorola Nexus 6 V,A Invensense Inc.
Motorola Moto G(6) plus V AKM AK09918
Motorola Moto G(7) plus V MEMSIC MMC5603NJ
Motorola One V MEMSIC MMC3630KJ
OnePlus 5T V AKM AK09911
OnePlus 6 V AKM AK0991X
Samsung Galaxy A6+ V Yamaha YAS539
Samsung Galaxy A8 V AKM AK09918
Samsung Galaxy S7 edge V Yamaha YAS537
Samsung Galaxy S8 V,A AKM AK09916C
Samsung Galaxy S8+ V,A AKM AK09916C
Samsung Galaxy S9 V,A AKM AK09916C
Samsung Galaxy S10+ V,A AKM AK09918C
Samsung Galaxy Tab S2 V Yamaha
Samsung Galaxy Tab S3 V,A AKM AK09916
Samsung Galaxy Tab S4 V AKM AK09918
Sony Xperia 10 Plus V GlobalMEMS GMC306
Sony Xperia XZ2 Compact V AKM AK0991X

iOS
iPad Air 2019 V Unknown
iPad Mini 4 V Unknown
iPad Pro V AKM AK8789
iPad Pro 9.7 V Unknown

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Magnetometers
	2.2 Sensitivity of magnetometers to CPU activity

	3 Attack scenario
	3.1 Applicability of the scenarios
	3.2 Additional assumptions

	4 Attack details
	4.1 Data collection
	4.2 Data preprocessing
	4.3 Feature extraction and data classification
	4.4 Identifying target activity during continuous usage
	4.5 Identifying device movements

	5 Evaluation
	5.1 Information leakage
	5.2 Classification results
	5.3 Open-world scenario
	5.4 Continuous usage
	5.5 Robustness to movements

	6 Related work
	6.1 Website and app fingerprinting on mobile devices
	6.2 Exploiting the reaction of magnetometers to EM activity

	7 Countermeasures
	8 Discussion
	9 Conclusion
	References
	A Appendix

