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Abstract—Adversaries today can embed tracking identifiers
into ultrasonic sound and covertly transmit them between de-
vices without users realizing that this is happening. To prevent
such emerging privacy risks, mobile applications now require
a request for an explicit user permission, at run-time, to get
access to a device’s microphone. In this paper, however, we
show that current defenses are not enough. We introduce a
novel approach to acoustic cross-device tracking, which does not
require microphone access, but instead exploits the susceptibility
of MEMS gyroscopes to acoustic vibrations at specific (ultrasonic)
frequencies. Currently, no permissions are needed to access the
gyroscope’s data, and the gyroscope can be accessed from apps or
even from a web browser. In this manner, gyroscopes in modern
smartphones and smartwatches can be used as zero-permission
receivers of ultrasonic signals, making cross-device tracking
completely unnoticeable to users. We evaluate our approach on
several mobile devices using different audio hardware, achieving
10–20bit/s transmission bandwidth at distances from 35cm to
16m in realistic attack scenarios. Finally, we discuss potential
countermeasures against the presented attack.

Index Terms—cross-device tracking, ultrasonic communica-
tion, covert channels, MEMS gyroscope, web tracking

I. INTRODUCTION

Commercial companies today collect an increasing amount
of information about their users, to improve customer ex-
perience, but also to increase financial profits by showing
targeted advertisements. Advertising components can be em-
bedded as third-party content on hundreds of websites or
TV streams, making it possible to analyze user activity on
a large scale. Moreover, the widespread use of mobile and
wearable devices has resulted in the demand for cross-device
tracking technologies, which allow companies to correlate
user activities even across different devices. This introduces a
serious privacy threat, since such aggregated user profiles may
contain sensitive information about personal interests, location,
health, beliefs or sexuality, while users remain unaware of the
scope and mechanisms of such tracking [1], [2].

Usually cross-device tracking is performed by linking the
device to some deterministic information provided by users
themselves, e.g., application or website login credentials [3],
or by comparing attributes shared by all the devices, such as
IP addresses or location data. Recently, ultrasonic cross-device
tracking (uXDT) has emerged, based on embedding tracking
identifiers into ultrasonic sounds and detecting them with a
microphone on a user’s smartphone. In particular, companies
like Shopkick, Lisnr and Signal360 provide a way to deploy
ultrasonic beacons at specific locations (e.g., shops or festivals)

and detect them in a mobile application to show location-
relevant content. The company Silverpush developed means of
embedding tracking identifiers into TV streams. Meanwhile,
researchers [4] demonstrated how the uXDT technology can
be used for web-tracking purposes, e.g., for transmitting a
tracking ID from the Tor browser to an application on the
user’s smartphone in order to de-anonymize the web session.

Due to privacy concerns, uXDT technology raised the atten-
tion of public media [5] and the security community [4], [6].
In response, the Federal Trade Commission issued warning
letters to app developers who use Silverpush components,
asking them to explicitly disclose the usage of ultrasonic
tracking. Nevertheless, researchers recently found 234 Android
applications that are listening in the background for ultrasonic
beacons from TV streams [6], some of them with millions of
users, proving that the technology is being actively deployed.

Starting from Android 6, mobile applications are required to
ask for a user permission at run-time to access the microphone
(in the past it was only done during app installation). This
way, Android devices prevent stealthy audio recording. On
iOS devices, a pop-up warning is additionally shown when
the app accesses the microphone in the background. This way,
an attempt to start detection of uXDT signals by the app will
most likely raise user’s attention.

In this paper, we present a new approach to perform
uXDT, which does not require access to a microphone at all,
and instead uses gyroscopes in smartphones or smartwatches
as receivers for ultrasonic signals. It has been shown that
microelectromechanical (MEMS) gyroscopes are susceptible
to acoustic vibrations at specific resonance frequencies [7], [8],
typically within ultrasonic range (19–29kHz). In our work, we
show that ultrasonic signals can be emitted at these frequencies
with commonly-used audio hardware, and subsequently be
captured at a distance by gyroscopes of modern smartphones
and smartwatches. By analyzing spectral characteristics of
gyroscope’s response to sound, the signal can be decoded even
in the presence of device movements, e.g., when a smartphone
is held in a hand, or a smartwatch is worn on a wrist.

We show that cross-device tracking can be established
between commonly-used devices (e.g., a laptop and a smart-
phone) at distances of up to 35cm using internal laptop
speakers at 75% volume level, achieving a bitrate of 10bit/s.
With a more powerful speaker, distances of several meters
and a bitrate of up to 20bit/s are achieved. Although distance
and bandwidth are limited in comparison to existing uXDT
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solutions with recording using microphones, the proposed
method can be run completely stealthily to users, as access
to gyroscope data does not require any explicit permissions.
Adding such a permission, as well as applying other possible
countermeasures (as discussed in Section VI), introduces tech-
nical and usability problems and may not completely eliminate
this new attack vector. Therefore, our work demonstrates that
even with the hardened permission model on mobile devices,
uXDT technologies still pose a significant privacy risk.

A. Paper contributions

Our contributions can be summarized as follows:
• We introduce a novel method of cross-device tracking,

exploiting the sensitivity of gyroscopes in mobile devices
to acoustic vibrations.

• We present an implementation of the method with an
encoding scheme that is robust to background noise and
natural device movements, and demonstrate its applica-
bility to cross-device tracking scenarios, including web
tracking, TV media tracking and location tracking.

• We evaluate the implementation on different hardware
setups. To the best of our knowledge, our work is the
first to consider and evaluate acoustic transmission using
MEMS gyroscopes as receivers at a distance, when
sensor is not directly adjacent to the source.

II. BACKGROUND

In this section, we briefly describe use of MEMS gyroscopes
in mobile devices, their susceptibility to acoustic vibrations,
and abilities of modern audio hardware to transmit covert
acoustic signals.

A. MEMS gyroscopes in mobile devices

Most modern smartphones and smartwatches are equipped
with gyroscopes, which measure the rotation rate of the device
in radians per second around three physical axes, to estimate
its orientation in space. The acquired data is used in games,
virtual reality applications, etc. In Android and iOS devices,
3-axis gyroscope values are retrieved by using the Sensor API
[9] and the Core Motion [10] framework, respectively. The
sampling rate of the measurements depends on the sensor,
and is additionally limited by the operating system to reduce
power consumption. On all the tested devices, we were able
to access gyroscope data with sampling rates of 60–500 Hz.

Usually gyroscopes consist of one or several sensing
masses, constantly vibrating at a specific resonance frequency.
When the gyroscope is rotated, the Coriolis force is applied
to the sensing mass orthogonally to its vibration direction and
the rotation axis, with an amplitude proportional to the rotation
rate. A detailed explanation of MEMS gyroscope design can
be found in [11].

More importantly for our work, it is known that MEMS-
based gyroscopes are susceptible to acoustic signals at fre-
quencies close to the resonance frequency [12], [13]. The
acoustic waves cause the sensing mass to additionally vibrate
on the axes corresponding to the Coriolis force direction, and

0 5 10 15

Time (s)

0

0.01

0.02

0.03

A
n
g
u
la

r 
sp

ee
d
 (

ra
d
/s

)

Fig. 1. Example of acoustic disturbance of gyroscope measurements over the
x-axis, due to playing a 27kHz sine wave (5–10s). Measurements are recorded
on an iPhone 6s in a stationary position, located 30cm from the speaker.

disturb the resulting measurements on one or all of the axes.
For example, Figure 1 demonstrates gyroscope measurements
from a stationary iPhone 6s placed near a speaker. Once 80dB
sound is played at gyroscope’s resonance frequency, a clear
disturbance in gyroscope measurements is noticeable.

To limit acoustic disturbance from background noise, man-
ufacturers design the sensors to have a resonance frequency in
ultrasonic range. Most of gyroscopes tested in other works [7],
[8] and in our experiments (Section IV-A), had a resonance
frequency within 19–29 kHz. This fact makes gyroscopes
suitable receivers for covert ultrasonic signals: humans can
perceive sounds only within the 20 Hz–20 kHz range, with
the upper threshold declining with age, so most people over
18 years cannot hear frequencies above 16 kHz [14].

B. Capabilities of commodity audio hardware

In order to perform uXDT by disturbing gyroscopes at res-
onance frequencies, the transmitter should be able to produce
ultrasonic signals at 19–29 kHz. According to the Nyquist
sampling theorem, the highest possible frequency of the digital
signal to be reproduced without aliasing should not be more
than half of the sampling rate. Sound interfaces of computers
and mobile devices typically support at least 44.1 kHz, and
most of them even a 48 kHz sampling rate, to comply
with popular audio codecs. Moreover, many digital-to-analog
converters (DAC) and speakers in modern computers, home
theater systems and smartphones have 96 kHz or even 192 kHz
sampling rates to support high-resolution audio [15], [16].
Therefore, ultrasonic signals of up to 24 kHz can natively
be generated by most commodity audio hardware, and many
consumer devices are able to reproduce sounds of higher
frequencies, covering the aforementioned 19–29 kHz range.

III. METHODOLOGY

In this section, we describe the considered tracking scenar-
ios, present our encoding scheme and techniques used to detect
and decode the cross-device tracking signals.

A. Tracking scenarios

We consider cross-device tracking scenarios with two de-
vices and an adversary, who is trying to link information about
the victim user or their activity on one device (transmitter)
with user activity or profile on another device (receiver),
by transmitting a unique tracking identifier between them.



TABLE I
SETUP OF DIFFERENT TRACKING SCENARIOS.

Web tracking TV tracking Location
tracking

Distance short
(10–50cm)

medium
(0.5–3m)

long
(>1m)

Speaker quality low medium high
Sound levela low

(≈60–70dB)
medium
(≈70–85dB)

high
(≥85dB)

Transmitter device
belongs to

victim victim attacker

Special
requirements

in-browser
implementation

background
noise

device
movements

a measured near the source

The transmitter is assumed to be equipped with a non-
muted speaker, while any gyroscope-equipped smartphone or
a smartwatch is considered as the receiver.

The transmitter encodes the tracking identifier into ultra-
sonic sounds and plays them through the speaker. We assume
that the attacker has control over an application or a webpage
on the receiver, which records gyroscope data, captures trans-
mitted signals and decodes the ID. This malicious application
or a web page does not require any user permissions, unlike
ultrasonic tracking implementations which rely on access to
the microphone. Therefore, in our case code can be hidden
in any application which the user is likely to install, or can
be embedded on any webpage. To successfully capture ultra-
sonic signals, the receiver device is assumed to be naturally
located near the transmitter. The actual achievable distance is
evaluated in Section IV-C for different use cases.

Following existing research works [4], [6] and commercial
implementations (Shopkick, Lisnr, Signal360 and Silverpush)
with microphones as receivers, we consider three real-world
applications of uXDT, summarized in the Table I.

1) Web tracking: In this scenario, the victim visits a web
page, which aims to track or de-anonymize the browsing
session. We assume that the web session is protected from
traditional tracking mechanisms, such as tracking cookies or
browser fingerprinting (e.g., by using private browsing modes,
disallowing cookies, etc.). We further assume that the victim
has a malicious application on another device (a smartphone or
a smartwatch), placed nearby, e.g., on the same working desk.
Then the attacker can transmit the tracking ID between the
devices and link it to a concrete user. Furthermore, instead of
requiring an installed application, it is enough to have another
attacker-controlled web page opened on user’s smartphone.
Both transmitting and receiving web pages either belong to
the attacker, or only contain attacker-controlled components,
similarly to a technique of embedding third-party advertise-
ments or analytics components. Therefore, tracking code can
potentially appear on thousands of websites, which increases
the scale of the attack.

For this scenario, the transmitter is assumed to have only
low-quality speakers (e.g., internal speakers of laptops and
smartphones) and a comparably low volume level. In this

setup, we believe that even a short distance between devices
(10–50cm) is practical to make cross-device tracking approach
applicable. We evaluate the transmission distance of our ap-
proach in Section IV-C, and investigate how transmitter and
receiver can be implemented on web pages in Section IV-E.

2) TV tracking: In this scenario, the adversarial TV media
provider embeds ultrasonic beacons with encoded tracking IDs
into broadcasted TV content. By capturing these IDs with an
application installed on user’s mobile device placed nearby,
the adversary can track what and when users watch.

In comparison to the web-tracking scenario, in this scenario
we assume that TV systems contain higher-quality audio
hardware, and volume level is usually higher, around 75 dB
at a source [17]. However, in this case we must take into
account that ultrasonic signals will not be played individu-
ally, but rather embedded into existing TV audio content. In
Section IV-F, we evaluate how robust is the transmission in
presence of background noise.

3) Location tracking: In this scenario, the attacker places
ultrasonic beacons at specific locations (e.g., in shops) and
captures tracking IDs by a malicious application on victim’s
smartphone. This way, the captured ID reveals the user loca-
tion. Unlike other considered scenarios, in this case the trans-
mitter is fully under attacker’s control. Therefore, we assume
the transmitter to have high-quality audio hardware, and the
signal to be emitted at a maximum possible volume. However,
in this case the signal must be captured at higher distances (at
least 1–3m), and a receiver is unlikely to remain static, due
to movements of the device. We evaluate robustness of our
solution against natural device movements in Section IV-G.

B. Signal modulation and transmission

The easiest way to encode tracking IDs into ultrasonic
signals is to apply on-off keying (OOK) modulation: generate
and play a sine wave at the resonance frequency to encode a
1, and produce no sound to encode a 0. By observing resulting
gyroscope disturbances within time frames, the binary data can
be decoded. In particular, this encoding has been applied to
use MEMS sensors as receivers for ultrasonic covert channels
at zero distance [8] and within the same device [18].

In this work, we propose a more advanced modulation
scheme, which allows us to transmit binary data at a larger
distance, potentially at higher rates, and apply the solution to
practical scenarios. Our method is based on the fact that the
resonant signal causes the gyroscope sensing mass to vibrate,
i.e., a strong signal power becomes noticeable at a specific
frequency (further referred to as resulting frequency) in gy-
roscope measurements. Moreover, we discovered that sounds
played at frequencies slightly different from the resonant one
(±10 Hz), subsequently cause different values of resulting
frequencies in gyroscope measurements. Figure 2 (a) shows
recorded gyroscope measurements for a stationary smartphone
located near the speaker, after playing consecutively four 2-
second sine waves with 5 Hz step, starting from a resonance
frequency, together with a signal spectrogram. The resulting
frequency components remain noticeable even for disturbance
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(b) Gyroscope data (stationary, ~60dB sound)
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Fig. 2. Example of gyroscope disturbance: gyroscope measurements recorded while playing 4 sine waves of near-resonance frequencies to an iPhone 6s in a
stationary position within 50cm from a speaker at 80dB (a), at 60dB (b), and when it is held in hand (c), together with corresponding spectrograms.

caused by signals of lower sound pressure level, when actual
disturbance of measurements becomes indistinguishable from
a background noise (Figure 2 (b)), or in presence of distur-
bances caused by device movements, e.g., when the device is
held in hand (Figure 2 (c)). Therefore, in our implementation
we utilize several frequencies around the resonance frequency,
and observe the spectral characteristics of the signal.

More specifically, to transmit binary data, we empirically
choose N frequencies close to the resonance frequency (fur-
ther referred to as transmitting frequencies), and apply a
Multiple Frequency Shift Keying (MFSK) modulation scheme:
each of N frequencies is associated with a binary sequence
of log2N bits, so that a sine wave of a particular frequency,
played within a time frame, encodes the represented sequence.
The actual number of N is limited by the fact that the result-
ing disturbance of gyroscope measurements (and subsequent
frequency power) gradually degrades when the frequency of
sound is changing starting from the resonance frequency. One
can observe such attenuation in Figure 2 (a). Moreover, for
some of the transmitting frequencies we observed additional
distortions and aliasing in lower frequencies of the received
gyroscope signal, which reduced the range of potential fre-
quencies to be used for transmission. In our experiments, we
successfully utilized 4 frequencies, which allowed us to double
the bitrate in comparison to OOK modulation.

Speakers may produce hearable audio clicks at the begin-
ning and the end of ultrasonic transmission, due to abrupt
changes of the amplitude [19]. To prevent them, a Hann
[20] window is applied at the beginning and the end of
each generated sine wave. Additionally, in order to help the
transmitter recognize the start of the transmission, each signal
is prepended with a sequence of several short sine waves
played at the resonance frequency with a small pause between
them. In our experiments, we used three waves of 250ms each.

To decode the signal, the receiver first applies the short-time
Fourier transform (STFT) for the resulting frequency with a
window size equal to the duration of a single wave in the

preamble. A signal start is detected in resulting STFT values
by looking for a peak/no-peak sequence corresponding to the
signal preamble. Then, the signal is decoded bit by bit. Within
each time frame, a Fast Fourier transform (FFT) is calculated
for all N resulting frequencies (corresponding to chosen
transmitting frequencies). The binary sequence corresponding
to a resulting frequency with the highest FFT-magnitude is
chosen as transmitted within the time frame.

In practice, the transmitter will not know the resonance
frequency of the receiver’s gyroscope. To target multiple
devices, the binary ID must be modulated into several sound
waves, corresponding to different resonance frequencies. Then
these sounds can be either played subsequently, or combined
into one signal with equal weights. For simplicity, we present
evaluation results considering one sine wave at a time.

IV. EVALUATION

In this section, we first examine various mobile devices
and evaluate the resonance frequencies of their gyroscopes.
Then, for two smartphones, we test how the amplitude of the
signal depends on the sound pressure level (SPL). Afterwards,
we evaluate the proposed encoding scheme, by showing how
SPL affects the bit error rate (BER), determine a transmission
bitrate, and demonstrate the achievable distance. Finally, we
evaluate our approach when signals are transmitted between
web pages (web tracking), how robust is it against background
noise (TV tracking) and device movements (location tracking).

A. Resonance Frequencies

For our experiments, we chose 4 modern smartphones and a
smartwatch. To detect their resonance frequencies, we placed
the devices directly near a speaker, and generated sine waves
at frequencies from 18 kHz to 30 kHz with 20 Hz increments.
For each played sound, we calculated the average magnitude
of the resulting frequency, and chose the sound frequency
which caused the strongest signal. In all our experiments
(unless stated otherwise), we used a single external speaker
KRK Rokit 5 G3 connected to a Macbook Pro A1502 laptop,



TABLE II
RESONANCE FREQUENCY OF MOBILE DEVICES.

Device Gyroscope
Model

Sampling
Rate

Resonance
Frequency

Samsung Galaxy S7a STMb LSM6DS3 500 Hz 20.20 kHz
Samsung Galaxy S8a STMb LSM6DI 500 Hz 20.92 kHz
iPhone 6s ISb MP67B 100 Hz 27.02 kHz
LG Nexus 4 ISb MPU6050 200 Hz 26.90 kHz
Sony Smartwatch
SWR50

Bosch BMX055 200 Hz 25.48 kHz

a Two devices of the same model were tested to prove identical behavior
b IS: InvenSense; STM: STMicroelectronics

configured to output sounds with 96 kHz sampling rate. All
measurements were taken in a typical office environment.

Table II lists the tested devices, their gyroscopes, available
sampling rates, and discovered resonance frequencies. All
the devices in our experiment had gyroscopes susceptible to
ultrasonic sounds. Especially the STMicroelectronics sensors
were susceptible to 20.9–21.4 kHz sounds, which can be
generated even with 44 kHz audio hardware. Although other
researchers discovered the gyroscopes which do not resonate in
the ultrasonic range [7], we believe that the attack is practical,
since very popular devices (e.g., modern Apple and Sam-
sung smartphones) are affected. For further experiments, we
chose two smartphones with the highest noticeable disturbance
caused by sounds, namely Samsung Galaxy S7 and iPhone 6S.

B. Signal to Noise Ratio
In this experiment, we estimated the dependency of the

signal strength on the SPL, independently from the payload
and used encoding scheme. For this purpose, we gradually
reduced speaker volume from the maximum (by ≈5dB) and,
at each volume level, played a sine wave at the smartphone’s
resonance frequency. We recorded the produced sounds using a
microphone and calculated the resulting SPL, while recording
the gyroscope data on the smartphone. To precisely mea-
sure SPL for high-frequency sounds, we used an Earthworks
QTC30 microphone connected to a Fireface UC sound card,
with flat frequency responses of up to 30kHz. Then, we
calculated the Signal to Noise Ratio (SNR), i.e., the ratio
between the average magnitude of the resulting frequency in
FFT values for gyroscope measurements when the sound is
played, and without any sound produced. For comparison, we
also calculated SNR as the ratio between raw disturbances, by
calculating the standard deviation of the measurements.

Figure 3 shows the resulting SNR levels. One can see
that the resulting SNR is stronger for high SPL (80–90dB),
and the signal is slightly stronger for the iPhone 6S. For
both smartphones the SNR rapidly attenuates and becomes
comparable to noise at SPL lower than 60dB. Nevertheless,
one can see that the signal based on spectral characteristics is
stronger in comparison to the signal based on raw disturbance.

C. Transmission
In this experiment, we evaluated data transmission using the

proposed MFSK encoding scheme. For this purpose, we used

SPL, dB
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the same experimental setup as in the previous experiment,
and transmitted tracking IDs with different bitrates and volume
levels (50 IDs of a length of 30bits in each case), and measured
how SPL and the chosen bitrate affect the resulting bit error
rate (BER). We consider a BER of <10% as practically
suitable, since in this case error-correcting codes can be used
to ensure correct decoding with manageable overhead. For
example, a primitive narrow-sense BCH(31,16) code [21] can
be applied to correct 3 bits of a 31-bit code (in a channel with
BER of up to 9.7%), with a payload block of 16-bit.

Figure 4 shows the resulting BERs for two smartphones.
One can see that results comply with the SNR experiment,
with decoding errors appearing when the raw signal becomes
weak. The iPhone 6S, which has a higher SNR, performs better
for lower SPL values (45–60dB). The transmission bandwidth
is limited by the measurement sampling rate: at some point
(20bit/s for the iPhone with 100Hz sampling rate, and 25bit/s
for the Samsung with 500Hz sampling rate), the number of
samples within a recording time frame becomes too small to



correctly identify the resulting frequency, even with a high-
level SPL. Based on the results, we consider bitrates of 10bit/s
for low SPLs (>62dB) and 16–20bit/s for high SPLs (>68dB)
as practically suitable for corresponding tracking scenarios.

D. Distance

To theoretically estimate the maximum possible distance for
the transmission, we used the dependency between SPL and
distance from the source, known as inverse square law [22]:
given the reference SPLref measured at a distance dref , the
SPL depends on a distance d as

SPL = SPLref − 20 log(d/dref ),

d = dref ∗ 10|SPLref−SPL|/20.

Given the last formula and boundary SPL values found
in the previous experiment (62dB for 10bit/s, 68dB for 16–
20bit/s), we could estimate the transmission distance depend-
ing on a reference SPL. In practice, the actual distance can be
also affected by reflections, reverberations, interference, the
direction of the sound wave propagation, etc. Table III shows
the estimated and practically confirmed distances d for the
reference SPLs of 70dB, 80dB, and 95dB (maximum for our
speaker) at dref = 50cm. All measurements were taken on a
Samsung Galaxy S7 smartphone, in a typical office room (up
to 3.5m) and in the office corridor (>3.5m). As one can see
from the table, our practical results comply with theoretical
estimation. When the source SPL is high (≥80dB at 0.5m),
a distance of 3.5–16m is achieved, which proves applicability
of our approach to TV and location tracking scenarios.

To precisely evaluate the distance when the source SPL
is low and the transmitter is equipped with comparably low-
quality speakers (e.g., in the web-tracking scenario), we trans-
mitted tracking IDs on a laptop using only internal speakers,
and measured the area around the laptop, where the signal was
successfully decoded (BER<10%), depending on a system
volume level. The results are shown in Figure 5. The resulting
distance is limited to 45cm, but even this area can be sufficient
to transmit a tracking ID to a smartphone naturally located near
the laptop on a working desk. We consider a volume level of
75% and corresponding distance of up to 35cm as realistic.

E. Web tracking: in-browser implementation

To confirm applicability of the approach to the web-tracking
scenario, we implemented web-based versions of both trans-
mitter and receiver. We used the Web Audio API to play
sounds on a web page, and confirmed that it works in desktop
and mobile versions of modern browsers (Chrome, Firefox,
Tor Browser, and Safari). We must note that the transmission
is not completely covert to users: in all desktop browsers, a
small notification icon appears when the tab is playing sound.
Moreover, some browsers prevent automatic playback of audio
without an explicit user interaction. Nevertheless, the signal
can be embedded into benign audio or video content, not being
suspicious to users. We also discovered that Safari does not
show the notification icon if sound is played for less than 1.5s,
enabling completely covert transmission in a short time.

TABLE III
MAXIMUM DISTANCE OF THE TRANSMISSION.

Reference SPL
(at 50cm)

Max. distance (10bit/s) Max. distance (20bit/s)
estimated confirmed estimated confirmed

70dB 1.26m 1.2m 0.63m 0.6m
80dB 3.97m 3.5m 1.99m 2.0m
95dB 22.33m 16.0m 11.19m 9.0m
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Fig. 5. Area around laptops where the signal can be decoded with BER<10%,
depending on a volume level set using default system volume control (50%,
75%, and 100% of the maximum volume level).

To record the gyroscope measurements from a web page,
we used the DeviceMotion API. This API does not provide
raw gyroscope data, but instead uses a combined signal from
several sensors (so-called sensor fusion), which reduced the
resulting disturbance of the measurements. Moreover, the sam-
pling rate is reduced to 60–100Hz, depending on the browser.
As a result, we were able to achieve only 5bit/s bandwidth
in mobile browsers. On the Chrome mobile browser, the
amplitude of the combined signal was significantly lower in
comparison to raw gyroscope data, so we were able to decode
the signal only in close proximity to the source (≈80dB).

F. TV tracking: robustness against noise

To prove the robustness of the transmission against back-
ground noise, we transmitted tracking IDs with 80dB sounds
in presence of background sounds, played in parallel through
another speaker: background music and TV news broadcasting
(≈80dB), and white noise (60, 80, and 95dB). The signals
were captured on the Samsung Galaxy S7 smartphone located
at 3m distance. We found that the resulting decoding was not
affected at all (≤1% increase in BER), not only by music
and news broadcasting (which is expected, since these sounds
mostly lie within 20Hz–20kHz range), but even by white noise
significantly exceeding the source signal (95dB). Therefore,
gyroscopes naturally filter acoustic noise of other frequencies,
making the sensor a robust receiver for tracking signals.

G. Location tracking: robustness against movements

To test how robust the proposed method is against device
movements, we transmitted tracking IDs using a signal with
SPL of 95dB (measured at 50cm distance), and captured the
signal on the Samsung Galaxy S7 (at ≈3m distance), under the
following conditions: the smartphone was held in a hand, the



TABLE IV
ROBUSTNESS AGAINST MOVEMENTS.

Experiment BER (20bit/s) BER (10bit/s)
Static position (no movements) 2% 1%
Smartphone in the hand 7% 4%
Smartphone is used 11% 5%
Person is walking 28% 22%

smartphone was used to play a simple game, and the person
holding the smartphone was freely walking near the speaker.
In each case, we transmitted 50 IDs with a bitrate of 20bit/s,
and calculated the resulting BER.

The results are presented in the Table IV. The transmission
remains stable in presence of slight movements: when the
smartphone is held in a hand, or is being naturally used at
the time of recording. When the person is actively moving,
however, additional errors appear. Nevertheless, we believe
that the approach is applicable to the location tracking scenario
at specific locations, where the person is not always moving
(e.g., in shops), since the comparably high bandwidth allows
to quickly transmit the tracking ID.

V. RELATED WORK

A. Acoustic cross-device tracking

The idea of ultrasonic communication has been explored in
research over the last years, mainly focusing on establishing
covert channels between isolated computers [25]–[27] and
mobile devices [19] by using their speakers and microphones.
When commercial solutions of tracking TV ads and user
location using ultrasonic beacons emerged on the market,
researchers started to investigate the security and privacy
implications of such technology. Mavrodius et al. [4] described
several potential uXDT-based attacks, and designed a browser
extension to filter out high frequencies from audio playback, as
well as an Android permission to provide fine-grained control
over microphone recordings. Arp et al. [6], [28] presented a
detailed analysis of Silverpush and Lisnr implementations, and
found 234 existing Silverpush Android applications that are

listening in the background for ultrasonic beacons from TV
streams, proving that the technology is being actively deployed
in the wild. In our work, we demonstrate that described
attacks may pose even more significant privacy risk, as they
can be established fully unnoticeably to users, utilizing zero-
permission access to gyroscope sensors on mobile devices.

B. MEMS Sensors reaction to acoustic vibrations
Table V summarizes prior works on exploiting acoustic

susceptibility of MEMS sensors, and compares them with
our work. Michalevsky et al. [23] showed that gyroscopes
in smartphones can be used as low-frequency microphones.
Son et al. [7] tested 15 kinds of MEMS gyroscopes against
acoustic vibrations, demonstrating that gyroscope measure-
ments can be disturbed by sounds at resonant frequencies,
and exploited this fact to disorient drones by affecting their
gyroscopes. Trippel et al. [24] confirmed that MEMS ac-
celerometers are also susceptible to similar acoustic attacks.

To the best of our knowledge, utilizing MEMS gyroscopes
as receivers for communication channels was proposed for
the first time by Farshteindiker et al. [8]. A low-powered
piezoelectric transducer was considered to physically touch the
surface of a smartphone (≈0cm distance) and to send data with
minimal possible power. Recently, Block et al. [18] proposed
to exploit acoustic resonance of MEMS accelerometers to
establish a covert channel between two mobile applications
within one smartphone. In our work, we instead focus on
transmitting data over a distance, with commonly-used audio
hardware, and consider the practical cross-device tracking
scenario with victim users naturally using their mobile devices.

VI. COUNTERMEASURES

Several ways to prevent the presented cross-device tracking
are possible:
• Physical shielding is the most straightforward way to

limit acoustic susceptibility of the sensor. Existing ex-
periments show that a layer of foam, paper or aluminum
reduces the disturbance of the sensor by 16–60% [7].
However, this measure mismatches with an industry trend
of making consumer mobile devices thinner and lighter.

TABLE V
EXISTING ATTACKS EXPLOITING ACOUSTIC SUSCEPTIBILITY OF MEMS SENSORS.

Work Attack scenario Sensor Setupa Distance

O
th

er

Michalevsky et al. [23] Recognizing speech with
gyroscopes as microphones

gyroscope T: consumer speaker;
R: smartphone

–b

Trippel et al. [24] Disturbing and controlling
accelerometer output.

accelerometer T: consumer speaker;
R: acceler.-equipped device

–c

Son et al. [7] Disorienting drones by dis-
turbing gyroscope output

gyroscope T: consumer speaker;
R: drone flight controller

≈17cm (achieved);
≈37m (expected)d

C
ov

er
t

da
ta

tr
an

sm
is

si
on

Farshteindiker et al. [8] Exfiltrating data from a
surveillance implant

gyroscope T: piezoelectric transducer;
R: smartphone

≈0cm (physical touch)

Block et al. [18] Breaking Android applica-
tion sandboxing

accelerometer T: smartphone;
R: smartphone (T=R)

≈0cm (intra-device)

This work Ultrasonic cross-device
tracking

gyroscope T: low/high-quality speakers;
R: smartphone or smartwatch

from 35cm (low SPL)
to 16m (high SPL)

a T: transmitter; R: receiver
b not evaluated; smartphone is placed “as close as possible to speakers”

c not evaluated; sensor is located ≈10cm from the speaker
d potential distance when using dedicated Long Range Acoustic Devices (LRADs)



• Designing the gyroscopes to have a resonance frequency
of at least more than 25kHz prevents the attack from
being feasible, at least with audio hardware that does not
support high-resolution sampling.

• A low-pass filter can be applied to gyroscope measure-
ments on the hardware or OS level to prevent detection
of the transmitting frequency. However, precise gyroscope
measurements can be required for some apps.

• Mobile OS vendors can forbid access to gyroscope data
without an explicit permission granted by the user. How-
ever, users may not correctly estimate potential privacy
threats [29]. Moreover, most of mobile devices in use
run outdated operating system versions [30] and do not
regularly receive security updates [31].

• Starting from version 8.0, Android will allow applications
to run in a background only for a limited period of time,
similarly to iOS. We advocate this measure and believe
that additional restrictions can be introduced for access
to sensors from background processes.

Most described countermeasures would require hardware or
software changes, and may have performance or production
cost drawbacks. Therefore, the presented attack remains com-
pletely feasible at present and can cause significant privacy
threat to end users.

VII. CONCLUSION

In this work, we presented a novel approach to establish
ultrasonic cross-device tracking, using acoustic susceptibility
of gyroscopes in modern mobile devices. We showed that
observing the reaction of gyroscopes to resonance frequencies
in the frequency domain allows us to reliably capture tracking
signals at a distance, making the approach applicable to web
tracking, TV tracking and location tracking scenarios. The
presented method does not require any explicit permissions
and can be run unnoticed to end users.
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