
Tracking Private Browsing Sessions using CPU-based Covert
Channels

Nikolay Matyunin
Nikolaos A. Anagnostopoulos

Spyros Boukoros
Markus Heinrich
André Schaller

lastname@seceng.informatik.
tu-darmstadt.de

TU Darmstadt, CYSEC, Germany

Maksim Kolinichenko
m.kolinichenko@gmail.com

Unaffiliated

Stefan Katzenbeisser
katzenbeisser@seceng.informatik.

tu-darmstadt.de
TU Darmstadt, CYSEC, Germany

ABSTRACT
In this paper we examine the use of covert channels based on
CPU load in order to achieve persistent user identification through
browser sessions. In particular, we demonstrate that an HTML5
video, a GIF image, or CSS animations on a webpage can be used
to force the CPU to produce a sequence of distinct load levels, even
without JavaScript or any client-side code.
These load levels can be then captured either by another browsing
session, running on the same or a different browser in parallel to the
browsing sessionwewant to identify, or by amalicious app installed
on the device. To get a good estimation of the CPU load caused by
the target session, the receiver can observe system statistics about
CPU activity (app), or constantly measure time it takes to execute
a known code segment (app and browser). Furthermore, for mobile
devices we propose a sensor-based approach to estimate the CPU
load, based on exploiting disturbances of the magnetometer sensor
data caused by the high CPU activity.
Captured loads can be decoded and translated into an identifying
bit string, which is transmitted back to the attacker. Due to the way
loads are produced, these methods are applicable even in highly
restrictive browsers, such as the Tor Browser, and run unnoticeably
to the end user. Therefore, unlike existing ways of web tracking,
our methods circumvent most of the existing countermeasures, as
they store the identifying information outside the browsing session
being targeted.
Finally, we also thoroughly evaluate and assess each presented
method of generating and receiving the signal, and provide an
overview of potential countermeasures.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and coun-
termeasures;Browser security;Mobile andwireless security;
Software security engineering; Web application security;
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1 INTRODUCTION
In our modern interconnected world, users tend to share an ever
increasing amount of information on the web. In order to provide
personalized services, modern websites rely on identification mech-
anisms, which associate a particular web session with a specific
user. The most common way of identifying users online are cookies,
unique values stored in the browser and sent to the server within
every web request to associate a session with a concrete user. In-
terfaces such as Local Storage or Indexed Database can also be
used to store the identifier in the browser. Alternatively, browser
fingerprinting, which is achieved by combining unique information
about user’s settings from multiple JavaScript APIs, can be used
to identify the user in a probabilistic manner. Finally, the network
layer can be used in order to identify users based on their IP address.

Such identifiers may also be used to collect additional data about
users, in order to improve Quality of Service, or provide targeted
advertisements. Moreover, modern web applications often include
resources from third-party sources, e.g., embedded video content,
sharing buttons for social networks, advertisement and analytics
components, etc. By using the described identification mechanisms,
third-party providers can track user activity on hundreds of web-
sites, and link this information together. This introduces a serious
privacy threat, since sensitive information about one’s private life
may be exposed in this way, including personal interests, location
data, or even information about one’s health, beliefs and sexuality.

Many different countermeasures have been proposed in order to
mitigate such privacy threats. Web browsers have added a setting
to block third-party cookies, while plugins such as Ghostery and
DoNotTrackMe have been developed to block third-party trackers.
To defend on the network level, a VPN or a Proxy are ways to mask
one’s IP address, while anonymity networks such as Tor and I2P
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can completely anonymize the traffic flow. Users may also manually
delete their cookies after each session, or even usemultiple browsers
to prevent data sharing between sessions. Modern browsers have
introduced an “incognitomode”, a browsingmodewhich guarantees
to remove all user traces stored in the browser after closing the
window. Finally, the Tor Browser, a special bundle based on Firefox,
has been developed with a special focus on user’s privacy. It is
configured to connect only through the Tor network and block
sensitive APIs [25].

One way to circumvent above countermeasures, would be to
exfiltrate an identifying token out of the browser. This cannot
be easily performed, though, because web pages are isolated from
external processes and cannot access the file system. Thus, the need
for side channels arises, which allow to bypass such restrictions.

To this end, in this work we study CPU load covert channels
in modern browsers. More precisely, we propose to transmit an
identification token received from a server in a private browsing
session, protected from traditional tracking methods, to another
browsing session, which does have access to long-term identifying
information about the user, or to a malicious application installed
on the same device. This way, the received token can be linked to
the victim. The proposed method allows to transmit the tracking
token between private and non-private sessions opened in two tabs
of the same browser, between two instances of the same browser
(e.g., between an “incognito” and a normal browsing modes), or
even between different browsers. The transmission is performed
by encoding the token into distinct loads caused by the CPU. We
demonstrate that basic web components, such as HTML5 videos,
GIF images, or CSS animations, can be used to covertly produce
controllable CPU loads, without need of JavaScript or plugins.

A malicious app, running in a background on victim’s device, can
collect the encoded token by constantly accessing system statistics
about CPU activity (e.g., the /proc/stat file on Linux platforms),
in order to get a precise estimate of the CPU loads caused by the
victim browser session. However, as this information is a known
source of side-channel leakage [18, 30], access to /proc/stat is
forbidden for mobile applications in Android 8 (released in August
2017) [16], and also not available from web pages.

To overcome these restrictions, we propose two alternative meth-
ods to receive the token. First, the receiving (non-private) session or
application can continuously time the execution of some JavaScript
code, and thus can estimate the amount of CPU load caused by
the target browser session. Second, magnetometer sensor measure-
ments can be analyzed on mobile devices. We show that electro-
magnetic activity of the CPU causes noticeable disturbances in the
sensor measurements on smartphones, leaking information regard-
ing background CPU activity. The magnetometer data is available
from within mobile applications (through native system APIs), as
well as from web pages, using the recently introduced Generic Sen-
sor API [29]. The proposed receiving methods do not rely on a very
precise timer, unlike receivers for memory- and cache-based covert
channels (e.g., [24, 28]) and therefore are not mitigated by the latest
countermeasures against Spectre [14] attacks in browsers [20, 36].

Therefore, unlike the traditional tracking approaches, the pro-
posed solutionmakes tracking applicable to very restrictive browser
configurations (e.g., the Tor Browser), but requires an additional,
less restricted browser session to be opened at the same time, or a

malicious application installed on the same device. We show that
both timing-based and sensor-based approaches provide sufficient
information about the CPU load, and allow to achieve identification
of the victim browser sessions using a CPU-based covert channel.

Contributions
Our contributions are threefold:

• We thoroughly examine and evaluate in a systematic way the
usage of CPU-load covert channels to exfiltrate a tracking
ID from a private browser session. Our method works even
across different browsers, and is applicable to both desktops
and mobile platforms.

• We present and compare four distinct ways to force the CPU
load to follow a specific pattern. Apart from the traditional
way of executing CPU-intense client-side code, e.g., using
JavaScript, we show that HTML5 videos, GIF images, or
CSS animations can be used for this purpose. The latter two
pose a significant risk, as displaying GIF animations or the
execution of CSS in a web browser, unlike the execution of
Javascript, has up to now been considered as completely safe,
and is enabled even in restrictive browser configurations,
such as the Tor browser.

• We propose a novel approach to estimate CPU loads on
mobile devices, thereby receiving tracking information by
analyzing magnetometer sensor data. To the best of our
knowledge, our work is the first to demonstrate a privacy
implication of the new Generic Sensor API in browsers.

2 RELATEDWORK
2.1 Tracking web browser users
The most ubiquitous way of web tracking is storing tracking iden-
tifiers in-browser, typically as cookies, or in other storage facilities
available in the browser, such as the HTML5 Storage, Indexed Data-
base APIs, etc. Furthermore, researchers presented the concept of
evercookies [4, 13], where a tracking identifier is saved in several
places at once. If the user removes it from one of the storage sites
(e.g., by clearing the cookies), a script automatically “respawns” the
evercookie from the other storage places. Usage of this technique
has been observed on popular websites [1, 4]. To prevent it, browser
vendors introduced a private browsing mode, which guarantees to
remove all user traces after closing the browser window. In this
work, we propose to exfiltrate tracking identifiers out of the browser
using covert channels, in order to circumvent such protection.

Another approach for web-tracking is browser fingerprinting,
where users are identified by unique properties of their browser, sys-
tem environment or hardware [35]. Eckersley [10] found that more
than 80% of fingerprints are unique for a sample of around 450,000
desktop browsers, and Laperdrix et al. [15] demonstrated the same
effectiveness of fingerprints for mobile devices. Additional features
were proposed for mobile fingerprinting, such as imperfections in
sensor calibrations [6, 9], or unique audio hardware characteristics
[8]. Despite its high effectiveness, fingerprinting remains only a
probabilistic solution, while the use of tracking identifiers allows
to unambiguously identify each user. Moreover, most of the com-
monly used fingerprinting techniques rely on JavaScript or plugins
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to collect the identifying features [35], and browser vendors develop
defenses against common fingerprinting methods [25].

2.2 CPU-based covert channels
Covert channels based on CPU activity have typically been ap-
plied to virtualized environments, where virtual machines share
the same physical machine. In particular, Okamura and Oyama [23]
presented a load-based covert communication system between vir-
tual machines on the Xen hypervisor. By measuring the execution
time of small pieces of known program code, researchers achieved a
bitrate of 0.49bps with 100% accuracy. Rushanan et al. [26] proposed
to use the WebWorker API to create CPU loads in background web
pages and observe them using native applications. Recently, White
[37] described in his blog how this approach can be applied to the
communication between two browsers, by measuring execution
times of JavaScript fragments. In this work, we further develop
this idea, showing that a covert channel can be established even
without execution of JavaScript code on the transmitter side. We
additionally propose two ways of receiving the signal, and evaluate
the solution on different devices.

Oren et al. [24] demonstrated the feasibility of cache attacks us-
ing JavaScript, and were able to recover information about websites
visited in private browsing mode. Schwarz et al. [28] investigated
indirect ways to acquire precise timing in the browser, and imple-
mented an in-browser receiver for a DRAM-based covert channel.
Although such covert channels may also be potentially employed to
exfiltrate data from private browsing sessions, it may prove difficult
to successfully control the memory when JavaScript is turned off;
furthermore, their receiver relies on very precise timing informa-
tion, blocked in the latest web browsers [20, 36].

Several channels have been proposed to establish covert commu-
nication between sandboxed mobile applications, based either on
accessing common APIs and system resources [7, 18], or of hard-
ware components and during I/O operationssensors [2, 22, 27]. In
particular, Marforio et al. [18] described several covert channels,
including one based on exploiting CPU statistics over /proc/stat.
In our work, we show that distinct CPU loads can be generated
within a browser, even without JavaScript, and be used for track-
ing users, and apply both timing- and sensor-based approaches to
receive loads.

Apart from covert channels within one device, covert communi-
cation between devices has also been examined. Specifically, Hasan
et al. [11] investigated the ability of smartphone magnetometers
to detect the signal emitted by a nearby located electromagnet,
while Matyunin et al. [19] presented a complete covert channel
between smartphones and laptops, demonstrating that laptops em-
anate electromagnetic (EM) signals during I/O operations, which are
detectable by magnetometers at a distance. In this paper, we show
that distinct EM signals can be generated and captured even on a
smartphone itself, and apply the relevant covert channel scheme to
the web-tracking use case.

3 ATTACK SCENARIO
In this section, we discuss the assumptions required to establish
CPU-load covert channels in browsers, and present how to use
these covert channels for the purpose of web user tracking.

3.1 Assumptions
For our attack, we consider a victim who uses a desktop machine
or a smartphone, and interacts with the Internet through one of
the most commonly-used web browsers, such as Google Chrome,
Mozilla Firefox, or the Tor Browser. The victim visits an intrusive
website, which aims to identify the user session and therefore track
the victim. The intrusive website either fully belongs to the attacker,
or contains components from an attacker-controlled server. The
latter corresponds to a typical scenario when websites include third-
party code from advertisement or analytics services, such as Google
Analytics or Facebook Pixel. This way, third-party components from
advertisement networks are present on thousands of websites, and
any of these websites could carry the tracking code payload. As user
tracking is also of commercial interest of advertisement companies,
we consider this scenario as more scalable and practical.

Further, we assume that the intrusive website does not possess
any information which uniquely identifies the user (e.g., personal
or login information entered on the web page). Furthermore, we
assume that the client does not allow the intrusive website to per-
manently store any tracking identifiers (e.g., by disallowing cookies,
or by using private browsing mode), and prevents known finger-
printing techniques (e.g., by using the Tor Browser to hide the IP
address, and even disabling JavaScript). In any case, we assume that
traditional tracking mechanisms are not applicable for this web
session, and refer to it as target or private session.

Additionally, we assume that the victim has another web page
opened, containing attacker-controlled JavaScript code. Similarly
to the private session, this web site can either belong to the attacker,
or contain third-party inclusions under attacker’s control. How-
ever, in this case we assume that the web page does have access to
information which allows to uniquely identify the user, or store
the tracking ID. Therefore, this session is assumed not to be as
restrictive as the private session, and is referred as receiving or
non-private session. More specifically, the private and non-private
sessions are considered to be opened:

• in different tabs of the same browser instance (e.g., the user
provides login information in only the non-private session,
or specifically disallows tracking information for the private
session);

• in different instances of the same browser (e.g., the user
opens the private session in the private browsing mode, and
the non-private session in a “normal” mode).

• in different browsers (e.g., the user opens the private session
in the Tor Browser, but has the non-private session opened
in another browser for convenience, since the Tor network
is usually slower).

Alternatively, instead of having a non-private session, we could
assume the attacker to have control over a background application
running on the victim’s machine. This application does not require
any privileged access rights from the operating system, or addi-
tional permissions from the user. Therefore, the code can be hidden
in any app that already requires Internet access and which the
victim is likely to install on his device. This use case complies with
existing examples of mobile applications which silently performed
user tracking, and have been recently discovered in the wild [3].
Nevertheless, as this scenario requires an additional application
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Figure 1: Overview of the general attack scenario utilizing
the CPU-based covert channel.

installed, we consider it as less practical, but present evaluation for
the sake of completeness. In case the receiver is a web browser, we
will refer to this scenario as the in-browser scenario; in case the
receiver is an additional application, we speak of an in-app scenario.

3.2 Attack scheme
Our attack scenario is illustrated in Figure 1. As a first step, a victim
user visits a target private session (1). For every request, the server
generates a unique session ID (2) and a specific response for each
session ID, and sends it to the client (3). The response is crafted
in such a way as to cause the client browser to produce distinct
CPU loads, encoding the ID, when the response is processed (4).
We present four different ways that trigger such CPU loads and
describe them in detail in the following sections.

Depending on the considered scenario, the information is de-
coded in different ways:

• In the in-browser scenario, the JavaScript code running in
the non-private session estimates CPU loads and decodes
the transmitted ID (5). Then the decoded ID is linked to the
available non-private session information. Depending on
the browser configuration and the method of retrieving load
information, this code can be run in background, or only in
a foreground tab. We investigate the applicability of each
method and browser configuration in Section 5.1.

• In the in-app scenario, the attacker-controlled application
constantly records the system statistics regarding CPU activ-
ity in a background, captures the produced loads and decodes
the ID (5). Every ID decoded by the app is considered to be-
long to a specific user who may be identified by another
permanently stored unique token, created for each instance
of the recording application.

In both scenarios, the decoded ID is transmitted back to the
server together with the aforementioned unique app or browser
data (6), which finally allows the server to identify the user by
linking the session IDs to the same unique information (7).

4 TECHNICAL DESIGN
In this section, we describe implementation details of our covert
channel. First, we present our method of encoding data into CPU

loads and several approaches in order to produce these loads. Sub-
sequently, we describe and compare three different approaches of
measuring these loads, and examine the decoding process.

4.1 Encoding and transmission
To encode a binary identifier into CPU loads, we apply on-off key-
ing (OOK) modulation. We force a browser to produce intense CPU
activity within a time frame of length t to encode a 1, and per-
form no activity to encode a 0. Additionally, the transmitted ID is
prepended with a predefined binary sequence, in order to help the
decoding algorithm to recognize the start of the transmission. The
time periods for transmitting bits of this synchronization sequence
and for actual ID bits are of different length, in order to avoid pos-
sible false positive detections when the synchronization sequence
bits happen to appear in the ID itself. In our implementation, we
used the 11-bit Barker sequence for synchronization, due to its low
autocorrelation properties [5, 34], which facilitates its detection.

We implemented four different methods of producing CPU loads
in the browser, using either (1) JavaScript loops, (2) HTML5 videos,
(3) filtered GIF images, or (4) CSS animations. Figure 2 illustrates
all proposed approaches to encode a binary string into CPU loads,
which are explained in more detail in the following subsections.

Transmission: JavaScript. Our first approach to generate CPU
loads is to execute CPU-intense JavaScript code in the browser.
A loop that repeatedly checks if a time period has elapsed (busy
waiting) results in potential high use of one logical CPU core during
this time, corresponding to logical 1. In contrast, for time frames
corresponding to the encoding of a logical 0, our implementation
forces the target session to passively wait, using the setTimeout
JavaScript function. The relevant JavaScript code, combining time
frames of busy and passive waiting, is generated on the server’s
side for each ID, and then sent to the client for execution.

Furthermore, to increase the CPU load, we utilize theWebWorker
API, which allows running scripts in separate background threads.
To produce a high CPU load, busy waiting loops are concurrently
run in a number of threads, equal to the amount of available logical
processors, accessible through the hardwareConcurrency property.
Therefore, the OS will potentially use all available logical cores to
execute the JavaScript loop code. The actual CPU utilization de-
pends on background activities and the OS scheduling mechanism.

Although this approach is an efficient way to utilize up to 100%
of CPU time, the necessity of executing JavaScript in the target
session makes it potentially less practical, as JavaScript may be dis-
abled in restrictive browser configurations, e.g., in the Tor Browser.
Therefore, we were motivated to find alternative ways to produce
intensive CPU activity, which do not rely on the execution of scripts
in the target session.

Transmission: HTML5 video. The second method we propose in
order to create high CPU loads is rendering video with HTML5.
Video decoders require more CPU power to process video frames
with higher resolution. Moreover, the decoder requires slightly
more CPU resources to decompress so-called I-frames, which con-
tain a whole picture, than so-called B- and P-frames, which encode
only differences between the preceding and the succeeding I-frames.
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Figure 2: Illustration of four approaches to generate CPU loads: JavaScript, HTML5 video, GIF image, and CSS animations.

Therefore, to increase CPU activity within a time period, we can
play a video where each frame has a twice higher resolution, and is
encoded as an I-frame (hard fragments). In contrast, we can reduce
CPU work required for playback within a time frame by playing
a video consisting mostly of P-frames (easy fragments) with the
original resolution. A video combining hard and easy fragments is
created as a result, to produce distinct CPU loads.

As the target environment may not allow execution of JavaScript,
we may not have the ability to programmatically start and stop
video playback in the browser. Instead, the server creates a single
video containing a sequence of hard and easy fragments, corre-
sponding to the bits of the ID, to respectively increase or reduce
CPU activity. The autoplay property of the video HTML5 tag
containing our crafted video is then set, in order to start playback
automatically after loading. Additionally, the loop property can be
set to continuously repeat the playback in the target session.

The produced video element is set to have a fixed size corre-
sponding to the original resolution. It may be directly shown to the
user, as a seemingly benign component of the interface, since the
aforementioned encoding process results only in barely noticeable
quality differences between hard and easy fragments. Therefore, the
encoding process is not evident and the user cannot easily notice
that a transmission is taking place. Alternatively, the video object
can be hidden from the user (e.g., by setting a negligible opacity, or
setting the width and height of a video container to one pixel).

Transmission: GIF images. The third approach to produce CPU
loads is based on applying CPU-intense CSS styles to GIF anima-
tions. The filter CSS property allows to apply Gaussian blur to web
elements. For GIF animations, the filter has to be reapplied for every
frame of the image. If the radius of the filter is high, the resulting ren-
dering becomes computationally expensive, even for a very small
original image (30x30px in our experiments). Furthermore, the GIF
file format allows to set custom delays after individual frames of

the animation. Therefore, a high CPU load can be generated by
showing a blurred GIF animation with a maximum available frame-
per-second (FPS) rate. In contrast, showing only a single frame with
a delay of a time frame duration results in a small CPU load.

The resulting GIF animation can again be hidden by setting a
negligible opacity, or be used as a seemingly static benign image,
if all the frames of the GIF are identical. The loop property can be
set to continiously repeat the load generation. GIF animations do
not require JavaScript to be shown, and currently cannot be turned
off in user-level settings, even in the Tor Browser, which makes it
hard to prevent transmission using this approach.

Transmission: CSS animations. Our forth approach to produce
CPU loads is based on using CSS animations, which make it possible
to animate different CSS properties of custom web page elements
(e.g., their size, opacity, color, etc.). Declaring CSS animations also
do not require JavaScript in order to be declared and executed, and
are recommended for usage by modern browser vendors due to
their optimized performance [21].

Some of the animated properties, such as scale or rotation, are
highly optimized in modern browsers [17]. Other properties, how-
ever, require recalculation of the page layout or redrawing of el-
ements, and therefore cause intense CPU activity. We animated
concurrently 10 properties, including element size, position, color
and font, to produce distinct CPU loads. To cause even more CPU
loads, we declared the animations for several identical objects at
once, and repeat them several times within a time frame.We demon-
strate an example of such animation declaration in Appendix A.

To transmit each bit set to the logical value 1 in the ID, the server
declares a new animation, specifies its animation-duration prop-
erty to the length of a single time frame, and sets its animation-de-
lay property to start its playback at the corresponding time frame.
Therefore, time frames related to the encoding of bits with logical
value 0 result in passive waiting between animations. Finally, all
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Table 1: Comparison ofmethods ofmeasuring theCPU load.

/proc/stat Timing Sensor
Scenario app only app browser app browser
Setup: desktops + + + – –
Setup: mobiles ◦ (Android≤7) + + + +
Background
execution

+ + ◦ (desktop
only)

+ –

Sampling rate 50Hz 40Hz 50Hz 10Hz
CPU usage ≤ 5% 15–30% ≤ 5%

“+”: fully supported, “◦”: partially supported, “-”: not supported

the animations can be made invisible, by setting negligible opacity
to all the animated elements.

4.2 Receiving the signal
The produced CPU loads are to be recorded by either a non-private
session or a background application. In both cases, the receiving
code constantly evaluates the CPU load at a given frequency. The
obtained values are then analyzed by the decoding algorithm. We
propose three approaches to record CPU loads: the straightforward
method of reading /proc/stat data, as well as timing- and sensor-
based methods, which indirectly estimate the CPU load. Table 1
provides an overview of implemented approaches.

Receiver: /proc/stat. If the attacker controls a background ap-
plication running on a victim’s device (the in-app scenario), the
system statistics regarding CPU utilization can be directly accessed
in order to record CPU loads produced by the target session. On
Linux-based platforms, including the Android OS, (up to Android
7), this can be achieved by accessing the /proc/stat file, which
provides information regarding the amount of ticks (clock cycles)
that the CPU has spent performing different kinds of work. By
regularly reading the /proc/stat file, an estimate of the CPU load
can be computed as the ratio of ticks spent on non-idle activities, to
all clock ticks within the interval. Therefore, the resulting recorded
signal contains discrete-time values ranging from 0 to 1, where 1
represents 100% utilization of CPU.

We have implemented this method for Linux, MacOS and An-
droid platforms. The recording application can run completely in
the background, does not require privileged access or specific per-
missions from the user, and consumes a small amount of system
resources to perform constant recording. Therefore, the recording
is hard to detect, and can be a part of a seemingly benign applica-
tion. The recording sampling rate is limited by the update interval
for /proc/stat information. In our implementation, we were able
to record samples at a frequency of 50Hz, and constant recording
required less than additional 5% of available CPU time on all tested
devices.

It must be noted that this method is not applicable to the in-
browser scenario, as there is no JavaScript API to directly access
system statistics of CPU utilizations, or to access the filesystem.
Moreover, starting from Android 8 the /proc/stat is no longer
accessible from mobile applications. Nevertheless, we present eval-
uation results for this method, to be able to compare indirect ways
to estimate CPU activity with precise system information provided
in /proc/stat.

Receiver: timing-based. In order to estimate the CPU activity, the
receiving browsing session or app constantly executes a small code
segment and measures its execution time. The operating system has
to allocate CPU resources to the target session when its execution
requires intense CPU activity, and therefore the execution of the
receiving session code takes more time. Therefore, we can use the
execution time of a code segment run in the receiving session as
estimate of the overall system CPU utilization within the recorded
interval. For this reason, the resulting recorded signal consists of
discrete-time values of the execution times of the code fragment.

This approach can be run from a background application, as
well as from a background non-private tab having the receiving
session opened. On mobile devices, browsers are prevented from
executing JavaScript in background tabs, in order to reduce power
consumption. Therefore, on mobile devices the in-browser scenario
is limited to the use case when both private and non-private sessions
are opened side by side in the foreground.

The recording code in the receiving session has to consume a
significant amount of CPU time, in order to create a competition
for CPU resources between the two sessions. Moreover, in order
to capture the CPU activity performed by the target session, the
recording code needs to be run on several available physical threads.
In our implementation, we executed a recording with a sampling
rate of up to 40Hz, running counting loops in multiple threads,
consuming 15–30% of the overall CPU time on tested devices.

The optimal amount of threads to be used, as well as the number
of iterations to be executed in these threads, depends on a particu-
lar hardware configuration. Therefore, to choose best parameters,
the receiving session can perform a calibration phase right after
being opened. More specifically, the receiving session can initiate a
transmission of a predefined sequence using the JavaScript-based
method described above 4.1, and at the same time execute the re-
ceiving code fragment with different parameters, measuring the
resulting execution time difference between intervals correspond-
ing to bits 1 and 0. The number of threads and iterations which
results in a higher difference, is then used for continuous decoding.
In our implementation, we probe a set of 16 different parameters,
and the resulting calibration phase can be finished within 8 seconds.

Interestingly, for some configurations we observed the opposite
effect: the execution time of the receiving session becomes notice-
ably smaller when CPU-intensive code is executed by the target
session. This effect occurs due to CPU throttling: when applications
require only a small amount of CPU resources, the system throttles
the performance to save power; when the target session triggers
an intense CPU load, the system increases its performance, and the
code in the receiving session executes faster. Our decoding imple-
mentation allows us to address this case by additionally checking
the cross-correlation with the inverse synchronization sequence.

Receiver: sensor-based. Finally, we propose a sensor-based ap-
proach to estimate the CPU load on mobile devices. Modern smart-
phones are equipped with magnetometer sensors, which measure
the amplitude of the ambient magnetic field along the three axes.
This data is normally used to implement a digital compass. How-
ever, it has been shown [19] that the sensor data of a magnetometer
can be disturbed by the electromagnetic signals emitted by a nearby
laptop’s CPU or hard drive. We discovered that the magnetometer
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Table 2: Applicability of the four approaches proposed to generate CPU loads.

JavaScript HTML5 video GIF CSS animations
Browser applicability all tested browsers
Background tab execution fully supported a fully supported not supported not supported
Tor Browser security level
that permits execution

low (default) level low (default) level b all levels all levels

Preventionways in browsers disable JavaScript disable automatic playback impossible without plugins impossible without plugins
Ways of detection CPU monitoring,

JavaScript code analysis
CPU & network monitoring,
HTML5 video file analysis

CPU monitoring,
CSS and GIF file analysis

CPU monitoring,
CSS source analysis

Traffic overhead <1kB ≈3Mb for 30s video 10–100kB <2kB
Transmission speed
(with BER ≈ 10%)

/proc/stat: 20–30bit/s
timing: 10–20bit/s
sensor: 8–12bit/s

/proc/stat: 3–4bit/s
timing: 1–3bit/s
sensor: 1–3bit/s

/proc/stat: 7–12bit/s
timing: 5–8bit/s
sensor: 5–8bit/s

/proc/stat: 13–15bit/s
timing: 8–12bit/s
sensor: 5–8bit/s

a JavaScript can be throttled or even blocked in background tabs in mobile browsers b On medium and high security levels, video playback can be triggered by the user.

on a smartphone can be disturbed even by the EM signal emit-
ted by its own CPU. Moreover, the higher the CPU activity is, the
stronger the relevant EM emissions are, and, therefore, also the
higher the resulting disturbance is. Thus, by constantly observing
the magnetometer data, one can indirectly estimate the produced
CPU loads.

Sensor data can be accessed in Android applications by using the
Sensor API. Moreover, a new Generic Sensor API [29], introduced
in Google Chrome 631, allows to access magnetometer data from
web pages. Therefore, this method is applicable to both in-app
and in-browser scenarios. In order to convert the three-dimentional
magnetometer data into discrete-time values, we follow the solution
proposed in [19], by applying Principal Component Analysis [12]
to the data and choosing the first component as the result, as it
represents the direction with the biggest data disturbance.

Although the Generic Sensor API allows to access sensor data
only from foreground tabs, and limits the sampling rate to 10Hz,
this method provides a good estimate of the CPU load without
consuming many resources, unlike the timing-based approach. In
our in-browser and in-app implementations, we were able to record
magnetometer data using less than 5% of available CPU time.

4.3 Decoding
The decoding process is identical for three recording scenarios. First,
we calculate the cross-correlation between the recorded signal and
the predetermined synchronization sequence, both resampled to
have the same sampling rate. A time point corresponding to a
high peak in the cross-correlation is considered as the start of a
transmission.

We finally start decoding the recorded signal from the point
where it matches the predetermined synchronization sequence.
Then, using the synchronization sequence, we calculate the average
value of all measurements within time frames corresponding to
a logical 0, and, similarly, the average value of all measurements
corresponding to a logical 1. Subsequently, we define the mean of
these two averages as a threshold. Afterwards, the transmitted ID
is decoded bit by bit, by comparing this threshold with the average
of measurements within a time frame corresponding to a bit of the

1Currently an experimental feature, available to developers as an origin trial upon
request. To be released in Google Chrome 67 in May 2018.

ID. If this average is above the threshold, the bit is decoded as 1;
otherwise, the bit is decoded as 0.

5 EVALUATION
In this section, we evaluate the presented covert channel. First, we
compare the applicability of the four proposed methods of CPU
load generation to different browser setups. Then, we evaluate each
solution on different hardware and software configurations, by
measuring the Signal to Noise Ratio (SNR). Afterwards, we deter-
mine the achieved transmission speed for all proposed methods of
transmission and reception of the signal. Finally, we evaluate the
robustness of the signal in the presence of background CPU noise.

5.1 Applicability
In this section, we investigate browser configurations applicable
for each of the four approaches proposed to generate CPU loads,
specifically focusing on their applicability to the Tor Browser. Ad-
ditionally, we analyzed available ways in browsers to prevent the
success of these methods, described how the transmission can be
detected, and measured the traffic overhead introduced by each
approach. Table 2 summarizes the results. For convenience, we also
included in the table the average achieved bitrates for all three
recording approaches, discussed in more detail in Section 5.3.

We confirmed that all four approaches work in popular desk-
top and mobile browsers. The default configurations of all tested
browsers2 allow execution of JavaScript, as well as Web Workers
API support, playback of HTML5 videos, showing filtered GIF ani-
mations, and execution of CSS animations. To prevent successful
generation and transmission of the signal, some settings need to be
changed. In particular, JavaScript and automatic video playback can
be manually disabled in browsers. However, as mentioned before,
the generated video can be presented to the user as a seemingly
benign component of the interface. In the Tor browser, access to
sensitive content is regulated through the so-called “Security slider”
with three security levels, which represent a trade-off between us-
ability and security, by disabling several components at each level
[25]. All four approaches to create CPU loads work at a default
(Low) security level. At the Medium and High levels, untrusted

2 Tested browsers: Chrome 63.0 (desktop and mobile versions), Firefox 57.0 (desktop
and mobile versions), Tor Browser 7.0.
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Figure 3: SNR levels recorded for two laptops (1,2) and two smartphones (3,4), received using /proc/stat (a), timing (b), and
sensor (c) approaches. For the first laptop, recording are made in three different browsers (1.1, 1.2, 1.3).

JavaScript and video autoplay are disabled. However, the GIF and
CSS animations approaches work even at the highest security level.

Furthermore, GIF and CSS animations cannot be disabled at all
using the settings of all tested browsers, including the Tor Browser.
To prevent the transmission, users have to install an extension
which allows to block GIF animations or to override rules declaring
CSS animations. The potential shortcomings of the GIF and CSS
animations approaches are that a target web page has to be opened
in a foreground tab and the browser windowmust not be minimized.
In contrast, JavaScript-based and video-based generation methods
work even in minimized browsers and background tabs.

A straightforward way to detect covert transmission in all four
cases is to monitor the CPU activity. Additionally, a user can manu-
ally observe the sources of the web page and analyze the executed
JavaScript code, or the declaration of CSS animations, or discover
the hidden video or GIF element. The video approach also intro-
duces a traffic overhead which may be noticed at the network level.
However, even if the components of the attack are discovered, their
purpose may remain unclear to the user. In particular, additional file
content analysis is required to recognize hard and easy fragments
in the video file, or a significantly different amount of frames in the
GIF animation. Moreover, both JavaScript code and CSS animation
declarations can be obfuscated to hamper the analysis.

In summary, we believe that all four approaches are applicable
to modern desktop and mobile browsers. The methods based on
GIF and CSS animations introduce a significant privacy risk for
users, since they work even at the highest security level of the Tor
Browser, and cannot be disabled in browser settings.

5.2 Signal strength
In this section we measure and compare the strength of the signal
for each of the transmitting and recoding methods described in
Section 4. For this purpose, we measured the Signal to Noise Ratio

(SNR) of the produced signals, i.e., the ratio of the difference be-
tween the two signal levels (corresponding to high and low CPU
loads), to the standard deviation of measurements at the base CPU
load level, when no loads are induced by the target session. For
these measurements, we alternated high and low CPU loads lasting
for 2 seconds, and repeated this pattern 50 times. We used a Lenovo
X1 laptop with 2 CPU cores running Ubuntu 16.04, a MacBook Pro
with 4 CPU cores runningMacOS 10.12, as well as two smartphones:
a Nexus 5X and a BQ Aquaris X5, both running Android 7.1.

Figure 3 demonstrates the SNR measured on a Lenovo laptop in
one of the three tested browsers (1.1, 1.2, 1.3), on a MacBook Pro
laptop (2), on a Nexus 5X (3), and on a BQ Aquaris (4), recorded
by accessing /proc/stat (a), measuring timing response (b), or
analyzing magnetometer disturbances (c) on the smartphone. A
separate Google Chrome instance process was used for record-
ing using timing and sensor-based approaches. We checked that
timing recordings made in Mozilla Firefox produce similar results
with slightly lower SNR (≈20%) due to a higher “noise” level. We
also checked that recording magnetometer data using the native
application results in the same SNR (within ≈20%).

One can notice that all four approaches generate a distinct signal
in the tested browsers and on all tested devices. The JavaScript
method directly occupies all available CPU cores, which results in
the highest SNR in all recording scenarios. GIF animations, CSS
animations and HTML5 videos request only a part of the available
CPU resources, and therefore, the signal is lower in comparison to
JavaScript-based generation. Although the SNR levels observed for
the video-based method appear to be comparably low, we were able
to distinguish the signal levels and correctly decode transmitted
IDs, even for the minimum SNR value of ≈4 dB observed for this
method.

One can also notice that the timing-based approach, which relies
on competition between execution threads, results in a lower SNR
for non-JavaScript approaches than /proc/stat approach, which
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Figure 4: Bit Error Rate (BER) corresponding to different bitrate for each encoding method on a laptop using the /proc/stat
receiver (1), a laptop using the timing-based receiver (2), a smartphone using the /proc/stat receiver (3), a smartphone using
the timing-based receiver (4), and a smartphone using the in-app (solid) and in-browser (dashed) sensor-based receivers (5).

has access to cumulative CPU activity across all threads. Finally, one
can notice that sensor-based approach generates a distinguishable
signal on both smartphones, although requires much less resources
than the timing approach.

As a result, we consider all of the approaches discussed as practi-
cal and potentially capable of successfully transmitting and receiv-
ing a signal under different hardware and software configurations.

5.3 Transmission bitrate
In this section, we evaluate the optimal speed of covert transmission
using each generation method and three proposed receivers, when
using the on-off modulation scheme described in Section 4.1.

For this purpose, we transmitted IDs through the covert channel
with different bitrates, and calculated the decoding bit error rate
(BER). We consider a BER of 10% as practically suitable, since in this
case correct decoding can be achieved by using error-correcting
codes with manageable overhead. For each bitrate we transmitted
50 IDs of a length of 30 bits, each prepended with a 11-bit synchro-
nization sequence, which potentially allows to identify more than
1 billion unique sessions. We chose two representative hardware
configurations: a laptop Lenovo X1 and a smartphone Nexus 5X,
both using Google Chrome to open the target session.

Figure 4 demonstrates the dependency between BER and bitrate
for all fourmethods of generating CPU loads, using the /proc/stat-
based receiver (1,3) and the timing-based receiver (2,4) on both
devices, as well as using the sensor-based receiver on the smart-
phone (5) in both in-app and in-browser implementations.

One can see that the JavaScript method achieves the best trans-
mission speed, with up to 30 bit/s with <10% BER on a laptop when
using the /proc/stat-based receiver. Since only the JavaScript

approach allows to directly request all available CPU resources
with precise timing, bitrates achieved for signals produced with
CSS animations and GIF animations are comparably lower. Still, for
CSS animations we achieved bitrates of 5–15bit/s, depending on the
receiver. The signal produced by GIF animations is less stable on a
smartphone, apparently due to a different implementation of blur
filtering in mobile browsers. Finally, the lower SNR provided by the
video-based method results in a noisy signal even at a comparably
low transmission speed of 1–5 bit/s. Therefore, we consider this
approach suitable only for short IDs, e.g., with length of 10 bits.

When using the timing-based approach, more errors appear at
high bitrates for all signal generationmethods, since the used decod-
ing method relies on a less precise CPU load estimation mechanism.
Similarly, the sensor-based receiver on the smartphone provides
less precise and more noisy signal, but still achieves successful de-
coding at 5–8bit/s for transmission using CSS and GIF animations.
The in-browser implementation of the sensor-based receiver (with
a sampling rate limited to only 10Hz) remains stable for low speed,
with additional errors appearing at high bitrates.

We can conclude that all proposed methods allow to covertly
transmit identifiers within several seconds, and reliably receive
them by reading the /proc/stat file, as well as indirectly estimat-
ing the CPU activity using the timing- and sensor-based approaches.

5.4 Robustness
In this section, we evaluate our covert channel in the presence of
background CPU activity. For this purpose, we ran transmissions
on a laptop simultaneously with synthetic stress tests using the
stress-ng utility, involving 5, 10 and 20% of CPU time and utilizing
all available threads, and measured the resulting BER. Furthermore,
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Table 3: Robustness of the transmission: BER under differ-
ent background activity.

/proc/stat Timing Sensor
5bit/s 8bit/s 5bit/s 8bit/s 5bit/s 8bit/s

Laptop
no noise 1% 2% 2% 4% – –
stress 5% 6% 9% 10% 12% – –
stress 10% 8% 11% 22% 26% – –
stress 20% 16% 23% 26% 31% – –
video 6% 1% 3% 8% 10% – –
video 22% 13% 14% 33% 36% – –
Smartphone
no noise 1% 3% 4% 9% 3% 8%
video 6% 2% 6% 9% 15% 4% 10%
video 20% 8% 17% 22% 28% 8% 18%

as a real-life workload scenario, we also evaluated transmission in
presence of videos played in background on the laptop and on the
smartphone, consuming 6–22% of CPU time.

Based on the previous experiment, we chose CSS animations as
the signal generation method, as it performed better among other
methods, not utilizing JavaScript. Table 3 shows the resulting BERs
for two fixed bitrates, using all three recording methods.

As one can see, the higher background activity, the more decod-
ing errors appear, as any peak activity can be misinterpreted as
transmission of bit 1 with the on-off modulation scheme applied.
For this reason, video playback causes less errors than artificial
stress activity (consuming similar total CPU time), as it results
in “smoother” use of CPU. The /proc/stat receiver, expectedly the
most robust one, provides successful decoding with up to 10% stress
noise. The timing-based approach is the most susceptible to back-
ground CPU activity, as additional running processes cause more
system interruptions and context switches, which affect the used
CPU estimation. The sensor-based approach, however, is compa-
rably stable under low noise from the video playback, especially
at low bitrates. Nevertheless, all the recording methods allow to
successfully receive the signal under low CPU activity caused by
playing videos in background, or stress activity under 5%.

As a result, we believe that all the approaches are applicable
to typical usage scenarios (web browsing, video playback) with
low background activity; under high noise, the decoding becomes
unstable, and more robust encoding schemes may be necessary to
improve quality of transmission.

6 COUNTERMEASURES
A number of potential countermeasures exist against the user track-
ing methods described in this paper. Nevertheless, the majority
of these countermeasures would require modifications in the soft-
ware or hardware of the target device, and may have significant
performance drawbacks.

The most straightforward way to prevent the attack of the in-
browser scenario has been proposed in [37]: limit the amount of
available CPU resources for all browsers, e.g., by using the cgroups
kernel feature on Linux platforms. For example, if each of the two
browsers employed in the in-browser scenario is allowed to only

use 25% of the CPU, the CPU loads induced by our code in the target
session will not affect the execution time of the code in the receiving
session. However, this countermeasure significantly reduces the
performance of web browsers in general, and strongly contradicts
the industry trend to increase the complexity of web applications.
Moreover, correct decoding of the ID may still be possible if the
code on the receiving session runs faster than usual when the target
session’s code is also running on the CPU, due to the throttling
effects that we have described earlier in Section 4.2.

Another countermeasure in order to hinder usage of the CPU-
based covert channel could be to randomize CPU activity, in order
to balance and normalize the loads produced, and thus prevent the
recognition of either the synchronization code preceding the identi-
fier or even the correct decoding of the CPU loads to bits. However,
in such a case, all applications would have to endure excessive
overheads in their processing times and thus the performance of
the overall system would also be significantly impeded.

Preventing the execution of JavaScript in background tabs on all
platformswould limit the applicability of the covert channel, as both
our JavaScript-based transmitter and the timing-based recorder
would only work in foreground tabs. Currently, the background
execution of JavaScript is limited in mobile browsers, and throttling
of JavaScript events in background tabs is recently introduced for
the desktop Chrome browser [31]. However, these limitations are
not applied to code executed in separate threads using Web Worker
API (as in our approach). The Chrome development team considers
restricting background Web Worker execution at some time in
2018 [32], and we believe that similar measures must be taken
for modern browsers. Nevertheless, the described HTML5 video
approach would not be affected by this change, while GIF and CSS
animations are already not executed in background tabs.

Additionally, obtaining precise timing information via the Perfor-
mance API in JavaScript can be forbidden to limit the effectiveness
of the in-browser decoding, at least for background tabs and in
restrictive browser configurations, such as Tor Browser. However,
we believe that decoding will still be possible with lower bitrates.

Unless CSS animations and GIF animations are disabled by de-
fault in the most restrictive mode of the Tor Browser, the related
attack scenario is very difficult to prevent. The Tor browser de-
velopment team already considered this idea to prevent timing
information from being indirectly available through CSS Anima-
tions [33], and we strongly advocate this measure.

Finally, to prevent the direct way of accessing CPU statistics,
access to the /proc/stat can also be disallowed for user-level
applications on all platforms, as has been made for Android 8. Fur-
thermore, even allowing access to the /proc/stat file only at a
reduced frequency could potentially make it more difficult to mea-
sure CPU load correctly and thus hinder successful identification of
the CPU-based transmission. Nevertheless, in this work we show
that both timing- and sensor-based techniques can be used instead
to indirectly estimate the CPU load.

Physical isolation (shielding) of the smartphone magnetometer
from the CPU can mitigate the sensor-based recording. However, it
would require hardware changes, and contradicts to the industry
trend of making mobile devices thin and compact. Furthermore, ac-
cess to magnetometers can be restricted in background applications,
and/or require and explicit user permission.



Tracking Private Browsing Sessions using CPU-based Covert Channels WiSec ’18, June 18–20, 2018, Stockholm, Sweden

We can therefore conclude that all methods described in this
paper regarding the persistent identification of browser sessions
through the usage of CPU-based covert channels remain completely
feasible and effective at present.

7 CONCLUSION
In this work, we presented the use of CPU-based covert channels
for the purpose of web user tracking. We showed that different
web components, such as HTML5 videos, GIF animations, or CSS
animations, can produce distinct CPU loads when executed in the
browser. An identification token encoded into these loads can be
effectively exfiltrated from a private browsing session to either
another session, or to an app recording in the background. The
resulting covert transmission can be initialized without any client-
side code, which makes the solution applicable to very restrictive
browser configurations.

To capture the produced loads, the receiver can observe sys-
tem statistics about CPU activity. Moreover, we compared two ap-
proaches to indirectly estimate the CPU activity: running a known
segment of code in several threads and observing execution time dif-
ferences caused by resource competition with the transmitter, and
observing magnetometer disturbances on smartphones which cor-
relate with electromagnetic activity caused by the CPU. Although
the resulting bit error rate becomes too high in presence of intense
background noise, both approaches allow to reliably receive the
covert signal under low background activity.

We therefore conclude that the covert CPU-based channel we
discussed in this paper poses a significant threat against the pri-
vacy of online users, even for those who use more restrictive web
browsers, such as the Tor Browser.
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A CSS ANIMATION DECLARATION
EXAMPLE

The code on the right declares a CSS animation, which can be used
to cause CPU loads in a browser (described in detail in Section 4).

/* declare an animation, can be applied to

several elements at once */

div.animated {

animation-name: cpu-intense-animation;

animation-duration: 100ms;

animation-delay: 2s;

animation-count: 10;

}

/* declare animated properties, setting their

initial (0%) and end (100%) values */

@keyframes cpu-intense-animation {

0% {

/* transforming */

width: 20px;

height: 20px;

/* moving */

left: 0px;

top: 0px;

/* repainting */

background-color: red;

border-color: white;

/* transforming and repainting text */

font-size: 1px;

font-family: Arial;

/* making the animated element invisible */

opacity: 0;

}

100% {

/* transforming */

width: 100px;

height: 1000px;

/* moving */

left: 100px;

top: 100px;

/* repainting */

background-color: green;

border-color: black;

/* transforming and repainting text */

font-size: 50px;

font-family: Arial;

/* making the animated element invisible */

opacity: 0.0001;

}}

https://doi.org/10.1515/popets-2016-0020
https://doi.org/10.1515/popets-2016-0020
https://www.chromestatus.com/feature/6172836527865856
https://www.chromestatus.com/feature/6172836527865856
https://blog.chromium.org/2017/03/reducing-power-consumption-for.html
https://blog.chromium.org/2017/03/reducing-power-consumption-for.html
https://trac.torproject.org/projects/tor/ticket/16110
https://trac.torproject.org/projects/tor/ticket/16110
https://doi.org/10.1090/s0002-9939-1961-0125026-2
https://doi.org/10.1109/NTMS.2015.7266460
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://ethanwhite.xyz/cpu-correlation

	Abstract
	1 Introduction
	2 Related work
	2.1 Tracking web browser users
	2.2 CPU-based covert channels

	3 Attack scenario
	3.1 Assumptions
	3.2 Attack scheme

	4 Technical design
	4.1 Encoding and transmission
	4.2 Receiving the signal
	4.3 Decoding

	5 Evaluation
	5.1 Applicability
	5.2 Signal strength
	5.3 Transmission bitrate
	5.4 Robustness

	6 Countermeasures
	7 Conclusion
	References
	A CSS animation declaration example

